Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1992, Volume 92, Number 2, Pages 215–254 (Mi tmf1501)  

This article is cited in 61 scientific papers (total in 61 papers)

Semiclassical maslov asymptotics with complex phases. I. General approach

V. V. Belov, S. Yu. Dobrokhotov

Moscow Institute of Electronic Engineering
References:
Abstract: A method of constructing semiclassical asymptotics with complex phases is presented for multidimensional spectral problems (scalar, vector, and with operator-valued symbol) corresponding to both classically integrable and classically nonintegrable Hamiltonian systems. In the first case, the systems admit families of invariant Lagrangian tori (of complete dimension equal to the dimensionn of the configuration space) whose quantization in accordance with the Bohr–Sommerfeld rule with allowance for the Maslov index gives the semiclassical series in the region of large quantum numbers. In the nonintegrable case, families of Lagrangian tori with complete dimension do not exist. However, in the region of regular (nonchaotic) motion, such systems do have invariant Lagrangian tori of dimensionk (incomplete dimension). The construction method associates the families of such tori with spectral series covering the region of intermediate quantum numbers. The construction includes, in particular, new quantization conditions of Bohr–Sommerfeld type in which other characteristics of the tori appear instead of the Maslov index. Applications and also generalizations of the theory to Lie groups will be presented in subsequent publications of the series.
Received: 19.02.1992
English version:
Theoretical and Mathematical Physics, 1992, Volume 92, Issue 2, Pages 843–868
DOI: https://doi.org/10.1007/BF01015553
Bibliographic databases:
Language: Russian
Citation: V. V. Belov, S. Yu. Dobrokhotov, “Semiclassical maslov asymptotics with complex phases. I. General approach”, TMF, 92:2 (1992), 215–254; Theoret. and Math. Phys., 92:2 (1992), 843–868
Citation in format AMSBIB
\Bibitem{BelDob92}
\by V.~V.~Belov, S.~Yu.~Dobrokhotov
\paper Semiclassical maslov asymptotics with complex phases.~I.~General approach
\jour TMF
\yr 1992
\vol 92
\issue 2
\pages 215--254
\mathnet{http://mi.mathnet.ru/tmf1501}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1226013}
\transl
\jour Theoret. and Math. Phys.
\yr 1992
\vol 92
\issue 2
\pages 843--868
\crossref{https://doi.org/10.1007/BF01015553}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992LB54300005}
Linking options:
  • https://www.mathnet.ru/eng/tmf1501
  • https://www.mathnet.ru/eng/tmf/v92/i2/p215
  • This publication is cited in the following 61 articles:
    1. A. V. Shapovalov, S. A. Siniukov, “Fractal dynamics of solution moments for the KPP–Fisher equation”, Russ Phys J, 2025  crossref
    2. Anton Kulagin, Alexander Shapovalov, “Quasiparticle solutions for the nonlocal NLSE with an anti-Hermitian term in semiclassical approximation”, Eur. Phys. J. Plus, 140:3 (2025)  crossref
    3. Anton E Kulagin, Alexander V Shapovalov, “Quasiparticles for the one-dimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation”, Phys. Scr., 99:4 (2024), 045228  crossref
    4. A.S. Kryukovsky, D.S. Lukin, D.V. Rastyagaev, “Systems of Differential Equations for Determining the Fundamental Vector of Special Wave Catastrophes”, Russ. J. Math. Phys., 31:4 (2024), 691  crossref
    5. A. I. Klevin, “Uniform Asymptotics in the Form of Airy Functions for Bound States of the Quantum Anisotropic Kepler Problem Localized in a Neighborhood of Annuli”, Russ. J. Math. Phys., 29:1 (2022), 47  crossref
    6. A. I. Allilueva, A. I. Shafarevich, “Maslov's Complex Germ in the Cauchy Problem for a Wave Equation with a Jumping Velocity”, Russ. J. Math. Phys., 29:1 (2022), 1  crossref
    7. A. I. Klevin, “New Integral Representations for the Maslov Canonical Operator on an Isotropic Manifold with a Complex Germ”, Russ. J. Math. Phys., 29:2 (2022), 183  crossref
    8. Alexander V. Shapovalov, Anton E. Kulagin, Sergei A. Siniukov, “Family of Asymptotic Solutions to the Two-Dimensional Kinetic Equation with a Nonlocal Cubic Nonlinearity”, Symmetry, 14:3 (2022), 577  crossref
    9. V. P. Maslov, “Using methods of classical and quantum physics in bioenergy”, Theoret. and Math. Phys., 206:3 (2021), 391–395  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    10. Dobrokhotov S.Yu. Tsvetkova A.V., “An Approach to Finding the Asymptotics of Polynomials Given By Recurrence Relations”, Russ. J. Math. Phys., 28:2 (2021), 198–223  crossref  isi
    11. Kulagin A.E. Shapovalov V A. Trifonov A.Y., “Semiclassical Spectral Series Localized on a Curve For the Gross-Pitaevskii Equation With a Nonlocal Interaction”, Symmetry-Basel, 13:7 (2021), 1289  crossref  isi
    12. Alexander V. Shapovalov, Anton E. Kulagin, “Semiclassical Approach to the Nonlocal Kinetic Model of Metal Vapor Active Media”, Mathematics, 9:23 (2021), 2995  crossref
    13. Shapovalov A.V. Kulagin A.E. Trifonov A.Yu., “The Gross-Pitaevskii Equation With a Nonlocal Interaction in a Semiclassical Approximation on a Curve”, Symmetry-Basel, 12:2 (2020), 201  crossref  isi
    14. A. I. Klevin, “Asymptotic eigenfunctions of the “bouncing ball” type for the two-dimensional Schrödinger operator with a symmetric potential”, Theoret. and Math. Phys., 199:3 (2019), 849–863  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    15. Anatoly Yu. Anikin, Sergey Yu. Dobrokhotov, Alexander I. Klevin, Brunello Tirozzi, “Short-Wave Asymptotics for Gaussian Beams and Packets and Scalarization of Equations in Plasma Physics”, Physics, 1:2 (2019), 301  crossref
    16. A. V. Shapovalov, A. Yu. Trifonov, “Adomyan Decomposition Method for a Two-Component Nonlocal Reaction-Diffusion Model of the Fisher–Kolmogorov–Petrovsky–Piskunov Type”, Russ Phys J, 62:5 (2019), 835  crossref
    17. A. Yu. Anikin, S. Yu. Dobrokhotov, A. I. Klevin, B. Tirozzi, “Gausian packets and beams with focal points in vector problems of plasma physics”, Theoret. and Math. Phys., 196:1 (2018), 1059–1081  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    18. Andrei I. Shafarevich, “The Maslov Complex Germ and Semiclassical Spectral Series Corresponding to Singular Invariant Curves of Partially Integrable Hamiltonian Systems”, Regul. Chaotic Dyn., 23:7-8 (2018), 842–849  mathnet  crossref
    19. A. Yu. Anikin, S. Yu. Dobrokhotov, A. I. Klevin, B. Tirozzi, “Scalarization of stationary semiclassical problems for systems of equations and its application in plasma physics”, Theoret. and Math. Phys., 193:3 (2017), 1761–1782  mathnet  crossref  crossref  adsnasa  isi  elib
    20. E. A. Levchenko, A. Yu. Trifonov, A. V. Shapovalov, “Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity”, Russ Phys J, 60:2 (2017), 284  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:909
    Full-text PDF :323
    References:101
    First page:3
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025