Abstract:
The Poisson structure of the moduli space of flat connections on a two dimensional Riemann surface is described in terms of lattice gauge fields and Poisson–Lie groups.
This publication is cited in the following 20 articles:
Juan Carlos Morales Parra, Bernd J. Schroers, “Classical Dynamical r-matrices for the Chern–Simons Formulation of Generalized 3d Gravity”, Ann. Henri Poincaré, 2024
Catherine Meusburger, “Poisson–Lie Groups and Gauge Theory”, Symmetry, 13:8 (2021), 1324
S. Arthamonov, N. Reshetikhin, “Superintegrable Systems on Moduli Spaces of Flat Connections”, Commun. Math. Phys., 386:3 (2021), 1337
Matthieu Faitg, “Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras”, SIGMA, 15 (2019), 077, 39 pp.
Victor Mouquin, “The Fock–Rosly Poisson Structure as Defined by a Quasi-Triangular $r$-Matrix”, SIGMA, 13 (2017), 063, 13 pp.
Anton Alekseev, Florian Naef, “Goldman–Turaev formality from the Knizhnik–Zamolodchikov connection”, Comptes Rendus. Mathématique, 355:11 (2017), 1138
Jiang-Hua Lu, Victor Mouquin, “Mixed Product Poisson Structures Associated to Poisson Lie Groups and Lie Bialgebras”, Int Math Res Notices, 2016, rnw189
J. Math. Sci. (N. Y.), 213:5 (2016), 769–785
N. A. Nekrasov, A. A. Roslyi, S. L. Shatashvili, “Darboux coordinates, Yang–Yang functional, and gauge theory”, Theoret. and Math. Phys., 181:1 (2014), 1206–1234
Yu. A. Neretin, “Spectral data for a pair of matrices of order three and an action of the group $\mathrm{GL}(2,\mathbb Z)$”, Izv. Math., 75:5 (2011), 959–969
Nekrasov N., Rosly A., Shatashvili S., “Darboux coordinates, Yang-Yang functional, and gauge theory”, Nuclear Phys B Proc Suppl, 216 (2011), 69–93
Neretin Yu.A., “Double Cosets for SU(2) x ... x SU(2) and Outer Automorphisms of Free Groups”, Int Math Res Not, 2011, no. 9, 2047–2067
Philip Boalch, “Quasi-Hamiltonian geometry of meromorphic connections”, Duke Math. J., 139:2 (2007)
L. O. Chekhov, R. C. Penner, “Introduction to quantum Thurston theory”, Russian Math. Surveys, 58:6 (2003), 1141–1183
V. I. Arnold, J. W. Bruce, H. K. Moffatt, R. B. Pelz, B. Khesin, A. Rosly, “Polar homology and holomorphic bundles”, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 359:1784 (2001), 1413
V. V. Fock, L. O. Chekhov, “Quantum Mapping Class Group, Pentagon Relation, and Geodesics”, Proc. Steklov Inst. Math., 226 (1999), 149–163
A. Kirillov, “Merits and demerits of the orbit method”, Bull. Amer. Math. Soc., 36:4 (1999), 433
K. Guruprasad, J. Huebschmann, L. Jeffrey, A. Weinstein, “Group systems, groupoids, and moduli spaces of parabolic bundles”, Duke Math. J., 89:2 (1997)
Michael Semenov-Tian-Shansky, Alexey Sevostyanov, Algebraic Aspects of Integrable Systems, 1997, 323
A. L. Pirozersky, “Poisson structures and integrable systems connected with graphs”, J. Math. Sci. (New York), 88:2 (1998), 292–305