Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1993, Volume 95, Number 2, Pages 228–238 (Mi tmf1462)  

This article is cited in 20 scientific papers (total in 20 papers)

Flat connections and polybles

V. V. Fock, A. A. Roslyi
References:
Abstract: The Poisson structure of the moduli space of flat connections on a two dimensional Riemann surface is described in terms of lattice gauge fields and Poisson–Lie groups.
English version:
Theoretical and Mathematical Physics, 1993, Volume 95, Issue 2, Pages 526–534
DOI: https://doi.org/10.1007/BF01017138
Bibliographic databases:
Language: English
Citation: V. V. Fock, A. A. Roslyi, “Flat connections and polybles”, TMF, 95:2 (1993), 228–238; Theoret. and Math. Phys., 95:2 (1993), 526–534
Citation in format AMSBIB
\Bibitem{FocRos93}
\by V.~V.~Fock, A.~A.~Roslyi
\paper Flat connections and polybles
\jour TMF
\yr 1993
\vol 95
\issue 2
\pages 228--238
\mathnet{http://mi.mathnet.ru/tmf1462}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1243250}
\zmath{https://zbmath.org/?q=an:0849.58030}
\transl
\jour Theoret. and Math. Phys.
\yr 1993
\vol 95
\issue 2
\pages 526--534
\crossref{https://doi.org/10.1007/BF01017138}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993ML10100007}
Linking options:
  • https://www.mathnet.ru/eng/tmf1462
  • https://www.mathnet.ru/eng/tmf/v95/i2/p228
  • This publication is cited in the following 20 articles:
    1. Juan Carlos Morales Parra, Bernd J. Schroers, “Classical Dynamical r-matrices for the Chern–Simons Formulation of Generalized 3d Gravity”, Ann. Henri Poincaré, 2024  crossref
    2. Catherine Meusburger, “Poisson–Lie Groups and Gauge Theory”, Symmetry, 13:8 (2021), 1324  crossref
    3. S. Arthamonov, N. Reshetikhin, “Superintegrable Systems on Moduli Spaces of Flat Connections”, Commun. Math. Phys., 386:3 (2021), 1337  crossref
    4. Matthieu Faitg, “Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras”, SIGMA, 15 (2019), 077, 39 pp.  mathnet  crossref
    5. Victor Mouquin, “The Fock–Rosly Poisson Structure as Defined by a Quasi-Triangular $r$-Matrix”, SIGMA, 13 (2017), 063, 13 pp.  mathnet  crossref
    6. Anton Alekseev, Florian Naef, “Goldman–Turaev formality from the Knizhnik–Zamolodchikov connection”, Comptes Rendus. Mathématique, 355:11 (2017), 1138  crossref
    7. Jiang-Hua Lu, Victor Mouquin, “Mixed Product Poisson Structures Associated to Poisson Lie Groups and Lie Bialgebras”, Int Math Res Notices, 2016, rnw189  crossref
    8. J. Math. Sci. (N. Y.), 213:5 (2016), 769–785  mathnet  crossref  mathscinet
    9. N. A. Nekrasov, A. A. Roslyi, S. L. Shatashvili, “Darboux coordinates, Yang–Yang functional, and gauge theory”, Theoret. and Math. Phys., 181:1 (2014), 1206–1234  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    10. Yu. A. Neretin, “Spectral data for a pair of matrices of order three and an action of the group $\mathrm{GL}(2,\mathbb Z)$”, Izv. Math., 75:5 (2011), 959–969  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    11. Nekrasov N., Rosly A., Shatashvili S., “Darboux coordinates, Yang-Yang functional, and gauge theory”, Nuclear Phys B Proc Suppl, 216 (2011), 69–93  crossref  isi
    12. Neretin Yu.A., “Double Cosets for SU(2) x ... x SU(2) and Outer Automorphisms of Free Groups”, Int Math Res Not, 2011, no. 9, 2047–2067  isi
    13. Philip Boalch, “Quasi-Hamiltonian geometry of meromorphic connections”, Duke Math. J., 139:2 (2007)  crossref
    14. L. O. Chekhov, R. C. Penner, “Introduction to quantum Thurston theory”, Russian Math. Surveys, 58:6 (2003), 1141–1183  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    15. V. I. Arnold, J. W. Bruce, H. K. Moffatt, R. B. Pelz, B. Khesin, A. Rosly, “Polar homology and holomorphic bundles”, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 359:1784 (2001), 1413  crossref
    16. V. V. Fock, L. O. Chekhov, “Quantum Mapping Class Group, Pentagon Relation, and Geodesics”, Proc. Steklov Inst. Math., 226 (1999), 149–163  mathnet  mathscinet  zmath
    17. A. Kirillov, “Merits and demerits of the orbit method”, Bull. Amer. Math. Soc., 36:4 (1999), 433  crossref
    18. K. Guruprasad, J. Huebschmann, L. Jeffrey, A. Weinstein, “Group systems, groupoids, and moduli spaces of parabolic bundles”, Duke Math. J., 89:2 (1997)  crossref
    19. Michael Semenov-Tian-Shansky, Alexey Sevostyanov, Algebraic Aspects of Integrable Systems, 1997, 323  crossref
    20. A. L. Pirozersky, “Poisson structures and integrable systems connected with graphs”, J. Math. Sci. (New York), 88:2 (1998), 292–305  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:478
    Full-text PDF :189
    References:57
    First page:3
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025