Abstract:
On the base of analysis on the adelic group (Teyte Tate's formula) a regularization is proposed for the divergent infiniteproduct of p-adic Γ-functions
Γp(α)=1−pα−11−p−α,p=2,3,5,….
Adelic formula
reg∞∏p=2Γp(α)=ζ(α)ζ(1−α),
(ζ(α) is Riemann ζ-function) is proved.
Citation:
V. S. Vladimirov, “Derivation of Freund–Witten adelic formula for four-point Veneziano amplitudes”, TMF, 94:3 (1993), 355–367; Theoret. and Math. Phys., 94:3 (1993), 251–259
This publication is cited in the following 6 articles:
S. V. Kozyrev, A. Yu. Khrennikov, V. M. Shelkovich, “p-Adic wavelets and their applications”, Proc. Steklov Inst. Math., 285 (2014), 157–196
A. A. Bolibrukh, A. A. Gonchar, I. V. Volovich, V. G. Kadyshevskii, A. A. Logunov, G. I. Marchuk, E. F. Mishchenko, S. M. Nikol'skii, S. P. Novikov, Yu. S. Osipov, L. D. Faddeev, D. V. Shirkov, “Vasilii Sergeevich Vladimirov (on his 80th birthday)”, Russian Math. Surveys, 58:1 (2003), 199–209
M. K. Kerimov, “Vasiliĭ Sergeevich Vladimirov (on the occasion of his eightieth birthday)”, Comput. Math. Math. Phys., 43:11 (2003), 1541–1549
V. S. Vladimirov, “Adelic formulae for the gamma and beta functions of completions of algebraic number fields, and applications of them to string amplitudes”, Izv. Math., 60:1 (1996), 67–90
É. Yu. Lerner, “Feynman integrals of p-adic argument in momentum space. I. Convergence”, Theoret. and Math. Phys., 102:3 (1995), 267–274
V. S. Vladimirov, “Freund–Witten adelic formulae for Veneziano and Virasoro–Shapiro amplitudes”, Russian Math. Surveys, 48:6 (1993), 1–39