Abstract:
The (anti)self-duality equations for gauge fields in dimension d=4 and the generalization of these equations for d>4 are considered. The results on solutions of the (anti)self-duality equations in d⩾4 are reviewed. Some new classes of solutions of Yang–Mills equations in d⩾4 for arbitrary gauge fields are described.
Citation:
T. A. Ivanova, A. D. Popov, “(Anti)self-dual gauge fields in dimension d⩾4”, TMF, 94:2 (1993), 316–342; Theoret. and Math. Phys., 94:2 (1993), 225–242
This publication is cited in the following 40 articles:
Kazuki Hasebe, “A unified construction of Skyrme-type non-linear sigma models via the higher dimensional Landau models”, Nuclear Physics B, 961 (2020), 115250
Jason D. Lotay, Thomas Bruun Madsen, Springer INdAM Series, 23, Special Metrics and Group Actions in Geometry, 2017, 241
Andreas Deser, Olaf Lechtenfeld, Alexander D. Popov, “Sigma-model limit of Yang–Mills instantons in higher dimensions”, Nuclear Physics B, 894 (2015), 361
Severin Bunk, Olaf Lechtenfeld, Alexander D. Popov, Marcus Sperling, “Instantons on conical half-flat 6-manifolds”, J. High Energ. Phys., 2015:1 (2015)
Tatiana A. Ivanova, Olaf Lechtenfeld, Alexander D. Popov, Maike Tormählen, “Instantons in six dimensions and twistors”, Nuclear Physics B, 882 (2014), 205
Severin Bunk, Tatiana A. Ivanova, Olaf Lechtenfeld, Alexander D. Popov, Marcus Sperling, “Instantons on sine-cones over Sasakian manifolds”, Phys. Rev. D, 90:6 (2014)
Tatiana A. Ivanova, Alexander D. Popov, “Instantons on special holonomy manifolds”, Phys. Rev. D, 85:10 (2012)
Derek Harland, Alexander D. Popov, “Yang-Mills fields in flux compactifications on homogeneous manifolds with SU(4)-structure”, J. High Energ. Phys., 2012:2 (2012)
Derek Harland, Christoph Nölle, “Instantons and Killing spinors”, J. High Energ. Phys., 2012:3 (2012)
Alexander D. Popov, Richard J. Szabo, “Double quiver gauge theory and nearly Kähler flux compactifications”, J. High Energ. Phys., 2012:2 (2012)
Martin Wolf, “Contact manifolds, contact instantons, and twistor geometry”, J. High Energ. Phys., 2012:7 (2012)
Olaf Lechtenfeld, Alexander D. Popov, “Instantons on the six-sphere and twistors”, Journal of Mathematical Physics, 53:12 (2012)
Karl-Philip Gemmer, Olaf Lechtenfeld, Christoph Nölle, Alexander D. Popov, “Yang-Mills instantons on cones and sine-cones over nearly Kähler manifolds”, J. High Energ. Phys., 2011:9 (2011)
Alexander S. Haupt, Tatiana A. Ivanova, Olaf Lechtenfeld, Alexander D. Popov, “Chern-Simons flows on Aloff-Wallach spaces and spin(7) instantons”, Phys. Rev. D, 83:10 (2011)
Alexander D. Popov, “Hermitian Yang–Mills equations and pseudo-holomorphic bundles on nearly Kähler and nearly Calabi–Yau twistor 6-manifolds”, Nuclear Physics B, 828:3 (2010), 594
Derek Harland, Tatiana A. Ivanova, Olaf Lechtenfeld, Alexander D. Popov, “Yang-Mills Flows on Nearly Kähler Manifolds and G 2-Instantons”, Commun. Math. Phys., 300:1 (2010), 185
Thorsten Rahn, “Yang–Mills equations of motion for the Higgs sector of SU(3)-equivariant quiver gauge theories”, Journal of Mathematical Physics, 51:7 (2010)
Alexander D. Popov, “Non-Abelian Vortices, Super Yang–Mills Theory and Spin(7)-Instantons”, Lett Math Phys, 92:3 (2010), 253
Irina Bauer, Tatiana A. Ivanova, Olaf Lechtenfeld, Felix Lubbe, “Yang-Mills instantons and dyons on homogeneous G 2-manifolds”, J. High Energ. Phys., 2010:10 (2010)
Tatiana A. Ivanova, Olaf Lechtenfeld, Alexander D. Popov, Thorsten Rahn, “Instantons and Yang–Mills Flows on Coset Spaces”, Lett Math Phys, 89:3 (2009), 231