Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1993, Volume 94, Number 2, Pages 316–342 (Mi tmf1425)  

This article is cited in 40 scientific papers (total in 40 papers)

(Anti)self-dual gauge fields in dimension d4

T. A. Ivanovaa, A. D. Popovb

a M. V. Lomonosov Moscow State University
b Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics
References:
Abstract: The (anti)self-duality equations for gauge fields in dimension d=4 and the generalization of these equations for d>4 are considered. The results on solutions of the (anti)self-duality equations in d4 are reviewed. Some new classes of solutions of Yang–Mills equations in d4 for arbitrary gauge fields are described.
Received: 27.04.1992
English version:
Theoretical and Mathematical Physics, 1993, Volume 94, Issue 2, Pages 225–242
DOI: https://doi.org/10.1007/BF01019334
Bibliographic databases:
Language: Russian
Citation: T. A. Ivanova, A. D. Popov, “(Anti)self-dual gauge fields in dimension d4”, TMF, 94:2 (1993), 316–342; Theoret. and Math. Phys., 94:2 (1993), 225–242
Citation in format AMSBIB
\Bibitem{IvaPop93}
\by T.~A.~Ivanova, A.~D.~Popov
\paper (Anti)self-dual gauge fields in dimension $d\ge 4$
\jour TMF
\yr 1993
\vol 94
\issue 2
\pages 316--342
\mathnet{http://mi.mathnet.ru/tmf1425}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1221739}
\zmath{https://zbmath.org/?q=an:0802.58066}
\transl
\jour Theoret. and Math. Phys.
\yr 1993
\vol 94
\issue 2
\pages 225--242
\crossref{https://doi.org/10.1007/BF01019334}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993LZ24300011}
Linking options:
  • https://www.mathnet.ru/eng/tmf1425
  • https://www.mathnet.ru/eng/tmf/v94/i2/p316
  • This publication is cited in the following 40 articles:
    1. Kazuki Hasebe, “A unified construction of Skyrme-type non-linear sigma models via the higher dimensional Landau models”, Nuclear Physics B, 961 (2020), 115250  crossref
    2. Jason D. Lotay, Thomas Bruun Madsen, Springer INdAM Series, 23, Special Metrics and Group Actions in Geometry, 2017, 241  crossref
    3. Andreas Deser, Olaf Lechtenfeld, Alexander D. Popov, “Sigma-model limit of Yang–Mills instantons in higher dimensions”, Nuclear Physics B, 894 (2015), 361  crossref
    4. Severin Bunk, Olaf Lechtenfeld, Alexander D. Popov, Marcus Sperling, “Instantons on conical half-flat 6-manifolds”, J. High Energ. Phys., 2015:1 (2015)  crossref
    5. Tatiana A. Ivanova, Olaf Lechtenfeld, Alexander D. Popov, Maike Tormählen, “Instantons in six dimensions and twistors”, Nuclear Physics B, 882 (2014), 205  crossref
    6. Severin Bunk, Tatiana A. Ivanova, Olaf Lechtenfeld, Alexander D. Popov, Marcus Sperling, “Instantons on sine-cones over Sasakian manifolds”, Phys. Rev. D, 90:6 (2014)  crossref
    7. Tatiana A. Ivanova, Alexander D. Popov, “Instantons on special holonomy manifolds”, Phys. Rev. D, 85:10 (2012)  crossref
    8. Derek Harland, Alexander D. Popov, “Yang-Mills fields in flux compactifications on homogeneous manifolds with SU(4)-structure”, J. High Energ. Phys., 2012:2 (2012)  crossref
    9. Derek Harland, Christoph Nölle, “Instantons and Killing spinors”, J. High Energ. Phys., 2012:3 (2012)  crossref
    10. Alexander D. Popov, Richard J. Szabo, “Double quiver gauge theory and nearly Kähler flux compactifications”, J. High Energ. Phys., 2012:2 (2012)  crossref
    11. Martin Wolf, “Contact manifolds, contact instantons, and twistor geometry”, J. High Energ. Phys., 2012:7 (2012)  crossref
    12. Olaf Lechtenfeld, Alexander D. Popov, “Instantons on the six-sphere and twistors”, Journal of Mathematical Physics, 53:12 (2012)  crossref
    13. Karl-Philip Gemmer, Olaf Lechtenfeld, Christoph Nölle, Alexander D. Popov, “Yang-Mills instantons on cones and sine-cones over nearly Kähler manifolds”, J. High Energ. Phys., 2011:9 (2011)  crossref
    14. Alexander S. Haupt, Tatiana A. Ivanova, Olaf Lechtenfeld, Alexander D. Popov, “Chern-Simons flows on Aloff-Wallach spaces and spin(7) instantons”, Phys. Rev. D, 83:10 (2011)  crossref
    15. Alexander D. Popov, “Hermitian Yang–Mills equations and pseudo-holomorphic bundles on nearly Kähler and nearly Calabi–Yau twistor 6-manifolds”, Nuclear Physics B, 828:3 (2010), 594  crossref
    16. Derek Harland, Tatiana A. Ivanova, Olaf Lechtenfeld, Alexander D. Popov, “Yang-Mills Flows on Nearly Kähler Manifolds and G 2-Instantons”, Commun. Math. Phys., 300:1 (2010), 185  crossref
    17. Thorsten Rahn, “Yang–Mills equations of motion for the Higgs sector of SU(3)-equivariant quiver gauge theories”, Journal of Mathematical Physics, 51:7 (2010)  crossref
    18. Alexander D. Popov, “Non-Abelian Vortices, Super Yang–Mills Theory and Spin(7)-Instantons”, Lett Math Phys, 92:3 (2010), 253  crossref
    19. Irina Bauer, Tatiana A. Ivanova, Olaf Lechtenfeld, Felix Lubbe, “Yang-Mills instantons and dyons on homogeneous G 2-manifolds”, J. High Energ. Phys., 2010:10 (2010)  crossref
    20. Tatiana A. Ivanova, Olaf Lechtenfeld, Alexander D. Popov, Thorsten Rahn, “Instantons and Yang–Mills Flows on Coset Spaces”, Lett Math Phys, 89:3 (2009), 231  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:512
    Full-text PDF :186
    References:76
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025