Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1993, Volume 94, Number 2, Pages 253–275 (Mi tmf1421)  

This article is cited in 40 scientific papers (total in 41 papers)

Algebraic integrability for the Schrödinger equation and finite reflection groups

A. P. Veselova, K. L. Styrkasb, O. A. Chalykhb

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b M. V. Lomonosov Moscow State University
References:
Abstract: Algebraic integrability of an $n$-dimensional Schrödinger equation means that it has more thann independent quantum integrals. For $n=1$, the problem of describing such equations arose in the theory of finite-gap potentials. The present paper gives a construction which associates finite reflection groups (in particular, Weyl groups of simple Lie algebras) with algebraically integrable multidimensional Schrödinger equations. These equations correspond to special values of the parameters in the generalization of the Calogero–Sutherland system proposed by Olshanetsky and Perelomov. The analytic properties of a joint eigenfunction of the corresponding commutative rings of differential operators are described. Explicit expressions are obtained for the solution of the quantum Calogero–Sutherland problem for a special value of the coupling constant.
Received: 23.12.1992
English version:
Theoretical and Mathematical Physics, 1993, Volume 94, Issue 2, Pages 182–197
DOI: https://doi.org/10.1007/BF01019330
Bibliographic databases:
Language: Russian
Citation: A. P. Veselov, K. L. Styrkas, O. A. Chalykh, “Algebraic integrability for the Schrödinger equation and finite reflection groups”, TMF, 94:2 (1993), 253–275; Theoret. and Math. Phys., 94:2 (1993), 182–197
Citation in format AMSBIB
\Bibitem{VesStyCha93}
\by A.~P.~Veselov, K.~L.~Styrkas, O.~A.~Chalykh
\paper Algebraic integrability for the Schr\"odinger equation and finite reflection groups
\jour TMF
\yr 1993
\vol 94
\issue 2
\pages 253--275
\mathnet{http://mi.mathnet.ru/tmf1421}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1221735}
\zmath{https://zbmath.org/?q=an:0805.47070}
\transl
\jour Theoret. and Math. Phys.
\yr 1993
\vol 94
\issue 2
\pages 182--197
\crossref{https://doi.org/10.1007/BF01019330}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993LZ24300007}
Linking options:
  • https://www.mathnet.ru/eng/tmf1421
  • https://www.mathnet.ru/eng/tmf/v94/i2/p253
  • This publication is cited in the following 41 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:695
    Full-text PDF :217
    References:69
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024