Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1993, Volume 94, Number 2, Pages 200–212 (Mi tmf1417)  

This article is cited in 8 scientific papers (total in 10 papers)

Vector addition theorems and Baker–Akhiezer functions

V. M. Buchstabera, I. M. Kricheverb

a All-Union Scientific Research Institute for Physical-Technical and Radiotechnical Measurements of USSR Gosstandart
b L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
References:
Abstract: Functional equations that arise naturally in various problems of modern mathematical physics are discussed. We introduce the concepts of an $N$-dimensional addition theorem for functions of a scalar argument and Cauchy equations of rank $N$ for a function of a $g$-dimensional argument that generalize the classical functional Cauchy equation. It is shown that for $N=2$ the general analytic solution of these equations is determined by the Baker–Akhiezer function of an algebraic curve of genus 2. It is also shown that functions give solutions of a Cauchy equation of rank $N$ for functions of a $g$-dimensional argument with $N\le 2^{g}$ in the case of a general $g$-dimensional Abelian variety and $N\le g$ in the case of a Jacobian variety of an algebra curve of genusg. It is conjectured that a functional Cauchy equation of rankg for a function of a $g$-dimensional argument is characteristic for functions of a Jacobian variety of an algebraic curve of genusg, i. e., solves the Riemann–Schottky problem.
Received: 08.05.1992
English version:
Theoretical and Mathematical Physics, 1993, Volume 94, Issue 2, Pages 142–149
DOI: https://doi.org/10.1007/BF01019326
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. M. Buchstaber, I. M. Krichever, “Vector addition theorems and Baker–Akhiezer functions”, TMF, 94:2 (1993), 200–212; Theoret. and Math. Phys., 94:2 (1993), 142–149
Citation in format AMSBIB
\Bibitem{BucKri93}
\by V.~M.~Buchstaber, I.~M.~Krichever
\paper Vector addition theorems and Baker--Akhiezer functions
\jour TMF
\yr 1993
\vol 94
\issue 2
\pages 200--212
\mathnet{http://mi.mathnet.ru/tmf1417}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1221731}
\zmath{https://zbmath.org/?q=an:0803.39006}
\transl
\jour Theoret. and Math. Phys.
\yr 1993
\vol 94
\issue 2
\pages 142--149
\crossref{https://doi.org/10.1007/BF01019326}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993LZ24300003}
Linking options:
  • https://www.mathnet.ru/eng/tmf1417
  • https://www.mathnet.ru/eng/tmf/v94/i2/p200
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:951
    Full-text PDF :264
    References:107
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024