Abstract:
Effective many-fermion models with finite momentum cutoff in the regime of dynamical symmetry breaking are considered as low-energy approximation to the action of quantum chromodynamics. The quasilocal interaction vertices responsible for the formation of dynamic fermion mass are classified for these models in the near-critical region of coupling constants. It is shown that in four-dimensional space not only the 4-fermion interaction but also vertices with six and eight fermion fields and any number of derivatives are also important. In the mean field approximation an equation is derived for the critical surface for the coupling constants of the effective fermion action. The role of the leading interaction vertices in forming the physical parameters that do not depend on the momentum cutoff is discussed.
Citation:
A. A. Andrianov, V. A. Andrianov, “Effective fermion models with dynamical symmetry breaking”, TMF, 94:1 (1993), 6–18; Theoret. and Math. Phys., 94:1 (1993), 3–10
This publication is cited in the following 20 articles:
J. Moreira, J. Morais, B. Hiller, A. A. Osipov, A. H. Blin, “Thermodynamical properties of strongly interacting matter in a model with explicit chiral symmetry breaking interactions”, Phys. Rev. D, 98:7 (2018)
A. A. Osipov, B. Hiller, A. H. Blin, “π0-η-η′mixing in a generalized multiquark interaction scheme”, Phys. Rev. D, 93:11 (2016)
Fábio L. Braghin, “SU(2) Higher-order effective quark interactions from polarization”, Physics Letters B, 761 (2016), 424
J. Moreira, J. Morais, B. Hiller, A. A. Osipov, A. H. Blin, “Strange quark matter in the presence of explicit symmetry breaking interactions”, Phys. Rev. D, 91:11 (2015)
Andrianov A.A. Andrianov V.A. Espriu D., “Spontaneous Parity Violation Under Extreme Conditions: An Effective Lagrangian Analysis”, Eur. Phys. J. C, 74:6 (2014), 2932
Ademar Paulo, Fabio L. Braghin, “Vacuum polarization corrections to low energy quark effective couplings”, Phys. Rev. D, 90:1 (2014)
A. A. Osipov, B. Hiller, A. H. Blin, “Effective multiquark interactions with explicit breaking of chiral symmetry”, Phys. Rev. D, 88:5 (2013)
A. A. Osipov, B. Hiller, A. H. Blin, “Light quark masses in multi-quark interactions”, Eur. Phys. J. A, 49:1 (2013)
B. Hiller, J. Moreira, A. A. Osipov, A. H. Blin, “Phase diagram for the Nambu–Jona-Lasinio model with 't Hooft and eight-quark interactions”, Phys. Rev. D, 81:11 (2010)
Andrianov, AA, “Quasilocal Quark Models as effective theory of non-perturbative QCD”, International Journal of Modern Physics A, 20:8–9 (2005), 1850
Andrianov, VA, “Vector and axial-vector mesons in Quasilocal Quark Models”, European Physical Journal A, 17:1 (2003), 111
Andrianov, VA, “Contribution of higher meson resonances to the electromagnetic pion-mass difference”, Physics of Atomic Nuclei, 65:10 (2002), 1862
Andrianov A.A., Andrianov V.A., Rodenberg R., “Composite two-Higgs models and chiral symmetry restoration”, Journal of High Energy Physics, 1999, no. 6, 003
Vshivtsev, AS, “Dynamical effects in (2+1)-dimensional theories with four-fermion interaction”, Physics of Particles and Nuclei, 29:5 (1998), 523
Jordi Comellas, Yuri Kubyshin, Enrique Moreno, “Exact renormalization group study of fermionic theories”, Nuclear Physics B, 490:3 (1997), 653
A. A. Andrianov, V. A. Andrianov, V. L. Yudichev, “Fermion models with quasilocal interactions near polycritical point”, Theoret. and Math. Phys., 108:2 (1996), 1096–1082
E. Elizalde, S. D. Odintsov, “Higgs-Yukawa model in curved spacetime”, Phys. Rev. D, 51:10 (1995), 5950
A. S. Vshivtsev, K. G. Klimenko, V. V. Magnitskii, “Three-dimensional Gross–Neveu model in the external chromomagnetic fields at finite temperature”, Theoret. and Math. Phys., 101:3 (1994), 1436–1442
A. A. Andrianov, V. A. Andrianov, “Effective fermion models near tricritical point”, J. Math. Sci., 83:1 (1997), 1–10