Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1994, Volume 98, Number 1, Pages 29–37 (Mi tmf1398)  

This article is cited in 10 scientific papers (total in 10 papers)

Solution of Goursat problem for Maxwell–Bloch equations

O. M. Kiselev

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
References:
Abstract: The formal solution for initial-boundary problem for Maxwell–Bloch equations at x0, t0 is obtained by the inverse scattering transform method.
Received: 18.11.1992
English version:
Theoretical and Mathematical Physics, 1994, Volume 98, Issue 1, Pages 20–26
DOI: https://doi.org/10.1007/BF01015119
Bibliographic databases:
Language: Russian
Citation: O. M. Kiselev, “Solution of Goursat problem for Maxwell–Bloch equations”, TMF, 98:1 (1994), 29–37; Theoret. and Math. Phys., 98:1 (1994), 20–26
Citation in format AMSBIB
\Bibitem{Kis94}
\by O.~M.~Kiselev
\paper Solution of Goursat problem for Maxwell--Bloch equations
\jour TMF
\yr 1994
\vol 98
\issue 1
\pages 29--37
\mathnet{http://mi.mathnet.ru/tmf1398}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1291364}
\zmath{https://zbmath.org/?q=an:0818.35122}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 98
\issue 1
\pages 20--26
\crossref{https://doi.org/10.1007/BF01015119}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994NV61800003}
Linking options:
  • https://www.mathnet.ru/eng/tmf1398
  • https://www.mathnet.ru/eng/tmf/v98/i1/p29
  • This publication is cited in the following 10 articles:
    1. M. Filipkovska, “Initial-Boundary Value Problem for the Maxwell–Bloch Equations with an Arbitrary Inhomogeneous Broadening and Periodic Boundary Function”, SIGMA, 19 (2023), 096, 39 pp.  mathnet  crossref
    2. M. S. Filipkovska, V. P. Kotlyarov, “Propagation of electric field generated by periodic pumping in a stable medium of two-level atoms of the Maxwell–Bloch model”, Journal of Mathematical Physics, 61:12 (2020)  crossref
    3. Vladimir P. Kotlyarov, “A Matrix Baker–Akhiezer Function Associated with the Maxwell–Bloch Equations and their Finite-Gap Solutions”, SIGMA, 14 (2018), 082, 27 pp.  mathnet  crossref
    4. M. S. Filipkovska, V. P. Kotlyarov, E. A. Melamedova (Moskovchenko), “Maxwell–Bloch equations without spectral broadening: gauge equivalence, transformation operators and matrix Riemann–Hilbert problems”, Zhurn. matem. fiz., anal., geom., 13:2 (2017), 119–153  mathnet  crossref
    5. V. P. Kotlyarov, E. A. Moskovchenko, “Matrix Riemann–Hilbert Problems and Maxwell–Bloch Equations without Spectral Broadening”, Zhurn. matem. fiz., anal., geom., 10:3 (2014), 328–349  mathnet  crossref  mathscinet
    6. Vladimir Kotlyarov, “Complete linearization of a mixed problem to the Maxwell–Bloch equations by matrix Riemann–Hilbert problems”, J. Phys. A: Math. Theor., 46:28 (2013), 285206  crossref
    7. Alexander Sakhnovich, “Second harmonic generation: Goursat problem on the semi-strip, Weyl functions and explicit solutions”, Inverse Problems, 21:2 (2005), 703  crossref
    8. O. M. Kiselev, “Asymptotics of solutions of higher-dimensional integrable equations and their perturbations”, Journal of Mathematical Sciences, 138:6 (2006), 6067–6230  mathnet  crossref  mathscinet  zmath  elib
    9. A. A. Zabolotskii, “Dynamics of a light field in a composite integrable model”, J. Exp. Theor. Phys., 93:2 (2001), 221  crossref
    10. H Steudel, D J Kaup, “Inverse scattering transform on a finite interval”, J. Phys. A: Math. Gen., 32:34 (1999), 6219  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:419
    Full-text PDF :202
    References:113
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025