Teoreticheskaya i Matematicheskaya Fizika, 1995, Volume 105, Number 3, Pages 450–461(Mi tmf1389)
This article is cited in 10 scientific papers (total in 10 papers)
Renormalization group approach and short-distance expansion in theory of developed turbulence: Asymptotics of the triplex equal-time correlation function
Abstract:
Asymptotics of the equal time triplex correlation function for the developed turbulence of the incompressible fluid in the region of the strongly separated values of the wave vectors by the renormalization group approach and short distance expansion has been investigated. The problem of the most essential composite operator, giving contribution in this asymptotics, has been examined. For this purpose the critical dimension of the family of the tensor composite operators, which are square on the velocity gradient, have been found. The contribution of such operators in tested one-loop approximation turns out to be less essential (although insignificantly), than contribution of the linear term. The obtained asymptotics of the triplex correlator coincides by the form with one predicted by the EDQNM-approximation.
Citation:
L. Ts. Adzhemyan, S. V. Borisenok, V. I. Girina, “Renormalization group approach and short-distance expansion in theory of developed turbulence: Asymptotics of the triplex equal-time correlation function”, TMF, 105:3 (1995), 450–461; Theoret. and Math. Phys., 105:3 (1995), 1556–1565
\Bibitem{AdzBorGir95}
\by L.~Ts.~Adzhemyan, S.~V.~Borisenok, V.~I.~Girina
\paper Renormalization group approach and short-distance expansion in theory of developed turbulence: Asymptotics of the triplex equal-time correlation function
\jour TMF
\yr 1995
\vol 105
\issue 3
\pages 450--461
\mathnet{http://mi.mathnet.ru/tmf1389}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1605647}
\zmath{https://zbmath.org/?q=an:0889.76032}
\transl
\jour Theoret. and Math. Phys.
\yr 1995
\vol 105
\issue 3
\pages 1556--1565
\crossref{https://doi.org/10.1007/BF02070877}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995VD44600011}
Linking options:
https://www.mathnet.ru/eng/tmf1389
https://www.mathnet.ru/eng/tmf/v105/i3/p450
This publication is cited in the following 10 articles:
Nikolay V. Antonov, Michal Hnatič, Juha Honkonen, Polina I. Kakin, Tomáš Lučivjanský, Lukáš Mižišin, “Renormalized field theory for non-equilibrium systems”, Riv. Nuovo Cim., 2025
Hnatic M. Honkonen J. Lucivjansky T., “Symmetry Breaking in Stochastic Dynamics and Turbulence”, Symmetry-Basel, 11:10 (2019), 1193
Hnatic M., Honkonen J., Lucivjansky T., “Advanced Field-Theoretical Methods in Stochastic Dynamics and Theory of Developed Turbulence”, Acta Phys. Slovaca, 66:2-3 (2016), 69–265
Adzhemyan L.Ts., Antonov N.V., Honkonen J., Kim T.L., “Anomalous scaling of a passive scalar advected by the Navier–Stokes velocity field: two-loop approximation”, Phys. Rev. E, 71:1 (2005), 016303, 20 pp.
Adzhemyan L.T., Antonov N.V., Runov A.V., “Anomalous scaling, nonlocality, and anisotropy in a model of the passively advected vector field”, Phys. Rev. E, 64:4 (2001), 046310, 30 pp.
Adzhemyan L.T., Antonov N.V., Hnatich M., Novikov S.V., “Anomalous scaling of a passive scalar in the presence of strong anisotropy”, Phys. Rev. E, 63:2 (2001), 016309, 25 pp.
N.V. Antonov, “Anomalous scaling of a passive scalar advected by the synthetic compressible flow”, Physica D: Nonlinear Phenomena, 144:3-4 (2000), 370
L. Ts. Adzhemyan, N. V. Antonov, M. Hnatich, S. V. Novikov, “Anomalous scaling of a passive scalar in the presence of strong anisotropy”, Phys. Rev. E, 63:1 (2000)
Adzhemyan L.T., Antonov N.V., Vasil'ev A.N., “Renormalization group, operator product expansion, and anomalous scaling in a model of advected passive scalar”, Phys. Rev. E, 58:2 (1998), 1823–1835
Adzhemyan L.Ts., Antonov N.V., Vasilev A.N., “Kvantovo-polevaya renormalizatsionnaya gruppa v teorii razvitoi turbulentnosti”, UFN, 166:12 (1996), 1257–1284