Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1995, Volume 105, Number 3, Pages 393–404 (Mi tmf1383)  

This article is cited in 67 scientific papers (total in 67 papers)

On physical interpretations of fractional integration and differentiation

R. S. Rutman

University of Massachusetts Dartmouth
References:
Abstract: Is there a relation between fractional calculus and fractal geometry? Can a fractional order system be represented by a causal dynamical model? These are the questions recently debated in the scientific community. The author intends to answer to these questions. In the first part of the paper, some recently suggested models are reviewed and no convincing evidence is found for any dynamical model of a fractional order system having been built with the help of fractals. Linear filters with constant lumped parameters have a very limited use as approximations of fractional order systems. The model suggested in the paper is a state-space representation with parameters as functions of the independent variable. Regularization of fractional differentiation is considered and asymptotic error estimates, as well as simulation results, are presented.
Received: 19.12.1994
English version:
Theoretical and Mathematical Physics, 1995, Volume 105, Issue 3, Pages 1509–1519
DOI: https://doi.org/10.1007/BF02070871
Bibliographic databases:
Language: Russian
Citation: R. S. Rutman, “On physical interpretations of fractional integration and differentiation”, TMF, 105:3 (1995), 393–404; Theoret. and Math. Phys., 105:3 (1995), 1509–1519
Citation in format AMSBIB
\Bibitem{Rut95}
\by R.~S.~Rutman
\paper On physical interpretations of fractional integration and differentiation
\jour TMF
\yr 1995
\vol 105
\issue 3
\pages 393--404
\mathnet{http://mi.mathnet.ru/tmf1383}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1605663}
\zmath{https://zbmath.org/?q=an:0897.26002}
\transl
\jour Theoret. and Math. Phys.
\yr 1995
\vol 105
\issue 3
\pages 1509--1519
\crossref{https://doi.org/10.1007/BF02070871}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995VD44600005}
Linking options:
  • https://www.mathnet.ru/eng/tmf1383
  • https://www.mathnet.ru/eng/tmf/v105/i3/p393
  • This publication is cited in the following 67 articles:
    1. Oleg Marichev, Elina Shishkina, “Overview of fractional calculus and its computer implementation in Wolfram Mathematica”, Fract Calc Appl Anal, 2024  crossref
    2. Helen Wilson, Sarthok Sircar, Priyanka Shukla, Fluid Mechanics and Its Applications, 138, Viscoelastic Subdiffusive Flows, 2024, 125  crossref
    3. Vasily E. Tarasov, “General Fractional Calculus in Multi-Dimensional Space: Riesz Form”, Mathematics, 11:7 (2023), 1651  crossref
    4. S Vitali, P Paradisi, G Pagnini, “Anomalous diffusion originated by two Markovian hopping-trap mechanisms”, J. Phys. A: Math. Theor., 55:22 (2022), 224012  crossref
    5. Jocelyn Sabatier, “Probabilistic Interpretations of Fractional Operators and Fractional Behaviours: Extensions, Applications and Tribute to Prof. José Tenreiro Machado's Ideas”, Mathematics, 10:22 (2022), 4184  crossref
    6. Jocelyn Sabatier, Lecture Notes in Networks and Systems, 452, Proceedings of the International Conference on Fractional Differentiation and its Applications (ICFDA'21), 2022, 74  crossref
    7. DAZHI ZHAO, YAN YU, LIANG PU, “CUT-OFF DISTRIBUTIONS AND PROBABILISTIC INTERPRETATIONS OF THE GENERAL FRACTIONAL DERIVATIVES WITH MEMORY EFFECT”, Fractals, 30:04 (2022)  crossref
    8. Jocelyn Sabatier, Lecture Notes in Networks and Systems, 452, Proceedings of the International Conference on Fractional Differentiation and its Applications (ICFDA'21), 2022, 1  crossref
    9. Jocelyn Sabatier, Fractional Order Systems, 2022, 551  crossref
    10. Xing Hu, Yongkun Li, “Left Riemann–Liouville Fractional Sobolev Space on Time Scales and Its Application to a Fractional Boundary Value Problem on Time Scales”, Fractal Fract, 6:5 (2022), 268  crossref
    11. Ahmed S. Hendy, T.R. Taha, D. Suragan, Mahmoud A. Zaky, “An energy-preserving computational approach for the semilinear space fractional damped Klein–Gordon equation with a generalized scalar potential”, Applied Mathematical Modelling, 108 (2022), 512  crossref
    12. Vasily E. Tarasov, “Entropy Interpretation of Hadamard Type Fractional Operators: Fractional Cumulative Entropy”, Entropy, 24:12 (2022), 1852  crossref
    13. Jocelyn Sabatier, Christophe Farges, Vincent Tartaglione, Intelligent Systems, Control and Automation: Science and Engineering, 101, Fractional Behaviours Modelling, 2022, 13  crossref
    14. Machado J.A.T., “The Bouncing Ball and the Gr Spacing Diaeresis Unwald-Letnikov Definition of Fractional Derivative”, Fract. Calc. Appl. Anal., 24:4 (2021), 1003–1014  crossref  isi
    15. Zhao D., Yu G., Yu T., Zhang L., “A Probabilistic Interpretation of the Dzhrbashyan Fractional Integral”, Fractals-Complex Geom. Patterns Scaling Nat. Soc., 29:08 (2021), 2150269  crossref  isi
    16. Jocelyn Sabatier, “Fractional Order Models Are Doubly Infinite Dimensional Models and thus of Infinite Memory: Consequences on Initialization and Some Solutions”, Symmetry, 13:6 (2021), 1099  crossref
    17. Ehab Malkawi, Advances in Computer and Electrical Engineering, Advanced Applications of Fractional Differential Operators to Science and Technology, 2020, 198  crossref
    18. Cresus F. de L. Godinho, Nelson Panza, José Weberszpil, J. A. Helayël-Neto, “Variational procedure for higher-derivative mechanical models in a fractional integral”, EPL, 129:6 (2020), 60001  crossref
    19. Lu Bai, Dingyu Xue, Li Meng, 2020 Chinese Control And Decision Conference (CCDC), 2020, 3225  crossref
    20. Jocelyn Sabatier, “Non-Singular Kernels for Modelling Power Law Type Long Memory Behaviours and Beyond”, Cybernetics and Systems, 51:4 (2020), 383  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:727
    Full-text PDF :338
    References:77
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025