Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1995, Volume 105, Number 3, Pages 355–363 (Mi tmf1379)  

This article is cited in 3 scientific papers (total in 3 papers)

Integral intertwining operators and quantum homogeneous spaces

L. L. Vaksman

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine
Full-text PDF (767 kB) Citations (3)
References:
Abstract: Integral representations of functions on quantum homogeneous spaces are considered. The Dirichlet problem for the quantum ball is solved and a q-analog of the Cauchy–Szegö formula is derived.
Received: 17.01.1995
English version:
Theoretical and Mathematical Physics, 1995, Volume 105, Issue 3, Pages 1476–1483
DOI: https://doi.org/10.1007/BF02070867
Bibliographic databases:
Language: Russian
Citation: L. L. Vaksman, “Integral intertwining operators and quantum homogeneous spaces”, TMF, 105:3 (1995), 355–363; Theoret. and Math. Phys., 105:3 (1995), 1476–1483
Citation in format AMSBIB
\Bibitem{Vak95}
\by L.~L.~Vaksman
\paper Integral intertwining operators and quantum homogeneous spaces
\jour TMF
\yr 1995
\vol 105
\issue 3
\pages 355--363
\mathnet{http://mi.mathnet.ru/tmf1379}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1605615}
\zmath{https://zbmath.org/?q=an:0936.17019}
\transl
\jour Theoret. and Math. Phys.
\yr 1995
\vol 105
\issue 3
\pages 1476--1483
\crossref{https://doi.org/10.1007/BF02070867}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995VD44600001}
Linking options:
  • https://www.mathnet.ru/eng/tmf1379
  • https://www.mathnet.ru/eng/tmf/v105/i3/p355
  • This publication is cited in the following 3 articles:
    1. A Yu Pirkovskii, “Quantum polydisk, quantum ball, andq-analog of Poincaré's theorem”, J. Phys.: Conf. Ser., 474 (2013), 012026  crossref
    2. O. Bershtein, S. Sinel'shchikov, “A $q$-analog of the Hua equations”, Zhurn. matem. fiz., anal., geom., 5:3 (2009), 219–244  mathnet  mathscinet  zmath
    3. S. Sinel'shchikov, L. Vaksman, Lecture Notes in Physics, 509, Supersymmetry and Quantum Field Theory, 1998, 312  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:345
    Full-text PDF :114
    References:46
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025