Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1995, Volume 105, Number 1, Pages 3–17 (Mi tmf1358)  

This article is cited in 11 scientific papers (total in 11 papers)

About semiboundness of $\delta$-perturbations of the Laplacian supported by curves with angle points

Yu. G. Shondin

Nizhny Novgorod State Pedagogical University
References:
Abstract: Еlementary self-adjoint perturbations of the Laplacian supported by curves with singular angle points are studied in $\mathbb R^3$ and $\mathbb R^4$. The perturbations are shown to be semibounded in $\mathbb R^3$ and unsemibounded in $\mathbb R^4$. In the last case semiboundness may take place in subspaces of a given symmetry as it is shown in simple example.
Received: 23.11.1994
Revised: 15.02.1995
English version:
Theoretical and Mathematical Physics, 1995, Volume 105, Issue 1, Pages 1189–1200
DOI: https://doi.org/10.1007/BF02067488
Bibliographic databases:
Language: Russian
Citation: Yu. G. Shondin, “About semiboundness of $\delta$-perturbations of the Laplacian supported by curves with angle points”, TMF, 105:1 (1995), 3–17; Theoret. and Math. Phys., 105:1 (1995), 1189–1200
Citation in format AMSBIB
\Bibitem{Sho95}
\by Yu.~G.~Shondin
\paper About semiboundness of $\delta$-perturbations of the Laplacian supported by curves with angle points
\jour TMF
\yr 1995
\vol 105
\issue 1
\pages 3--17
\mathnet{http://mi.mathnet.ru/tmf1358}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1602011}
\zmath{https://zbmath.org/?q=an:0872.47007}
\transl
\jour Theoret. and Math. Phys.
\yr 1995
\vol 105
\issue 1
\pages 1189--1200
\crossref{https://doi.org/10.1007/BF02067488}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995UF46100001}
Linking options:
  • https://www.mathnet.ru/eng/tmf1358
  • https://www.mathnet.ru/eng/tmf/v105/i1/p3
  • This publication is cited in the following 11 articles:
    1. Gianfausto Dell'Antonio, Springer Proceedings in Mathematics & Statistics, 377, Quantum and Stochastic Mathematical Physics, 2023, 107  crossref
    2. Behrndt J., Frank R.L., Kuehn Ch., Lotoreichik V., Rohleder J., “Spectral Theory for Schrödinger Operators with
      $$\varvec{\delta }$$
      -Interactions Supported on Curves in
      $$\varvec{\mathbb {R}^3}$$
      R 3”, Ann. Henri Poincare, 18:4 (2017), 1305–1347  crossref  mathscinet  isi  scopus
    3. S. V. Talalov, “Ob effekte perenosa massy vdol kosmicheskoi struny”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2(31) (2013), 259–266  mathnet  crossref  elib
    4. E. A. Vedutenko, S. V. Talalov, “Model rasseyaniya neitralnoi kvantovoi chastitsy na nestatsionarnoi krivoi”, Vestn. SamGU. Estestvennonauchn. ser., 2013, no. 3(104), 85–89  mathnet
    5. Talalov S.V., “About the Mechanism of Matter Transfer Along the Cosmic String”, Mod. Phys. Lett. A, 27:8 (2012), 1250048  crossref  isi
    6. Brasche, JF, “Interactions along Brownian paths in R-d, d <= 5”, Journal of Physics A-Mathematical and General, 38:22 (2005), 4755  crossref  mathscinet  zmath  adsnasa  isi
    7. Pavel Exner, Kazushi Yoshitomi, “Asymptotics of eigenvalues of the Schrödinger operator with a strong δ-interaction on a loop”, Journal of Geometry and Physics, 41:4 (2002), 344  crossref
    8. Andrea Posilicano, Operator Methods in Ordinary and Partial Differential Equations, 2002, 333  crossref
    9. Andrea Posilicano, “A Krein-like Formula for Singular Perturbations of Self-Adjoint Operators and Applications”, Journal of Functional Analysis, 183:1 (2001), 109  crossref
    10. I. Yu. Popov, D. A. Zubok, “Two physical applications of the Laplace operator perturbed on a null set”, Theoret. and Math. Phys., 119:2 (1999), 629–639  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    11. Yu. G. Shondin, “Semibounded local hamiltonians for perturbations of the laplacian supported by curves with angle points in $\mathbb R^4$”, Theoret. and Math. Phys., 106:2 (1996), 151–166  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:268
    Full-text PDF :84
    References:48
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025