Typesetting math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1995, Volume 104, Number 3, Pages 463–478 (Mi tmf1351)  

This article is cited in 64 scientific papers (total in 64 papers)

Polynomial supersymmetry and dynamical symmetries in quantum mechanics

A. A. Andrianov, M. V. Ioffe, D. N. Nishnianidze

Saint-Petersburg State University
References:
Abstract: A polynomial generalization of supersymmetry in quantum mechanics is proposed in one and two dimensions. The classification of polynomial suyperalgebras is developed in one dimension. In two dimensions the comprehensive analysis is made for supercharges of second order in derivatives and it is shown that the binomial superalgebra always entails the hidden dynamical symmetry induced by a central charge.
Received: 05.12.1994
English version:
Theoretical and Mathematical Physics, 1995, Volume 104, Issue 3, Pages 1129–1140
DOI: https://doi.org/10.1007/BF02068745
Bibliographic databases:
Language: Russian
Citation: A. A. Andrianov, M. V. Ioffe, D. N. Nishnianidze, “Polynomial supersymmetry and dynamical symmetries in quantum mechanics”, TMF, 104:3 (1995), 463–478; Theoret. and Math. Phys., 104:3 (1995), 1129–1140
Citation in format AMSBIB
\Bibitem{AndIofNis95}
\by A.~A.~Andrianov, M.~V.~Ioffe, D.~N.~Nishnianidze
\paper Polynomial supersymmetry and dynamical symmetries in quantum mechanics
\jour TMF
\yr 1995
\vol 104
\issue 3
\pages 463--478
\mathnet{http://mi.mathnet.ru/tmf1351}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1606981}
\zmath{https://zbmath.org/?q=an:0855.47044}
\transl
\jour Theoret. and Math. Phys.
\yr 1995
\vol 104
\issue 3
\pages 1129--1140
\crossref{https://doi.org/10.1007/BF02068745}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995UE86800007}
Linking options:
  • https://www.mathnet.ru/eng/tmf1351
  • https://www.mathnet.ru/eng/tmf/v104/i3/p463
  • This publication is cited in the following 64 articles:
    1. Bijan Bagchi, Rahul Ghosh, “Dirac Hamiltonian in a supersymmetric framework”, Journal of Mathematical Physics, 62:7 (2021)  crossref
    2. A. A. Andrianov, A. V. Sokolov, “Extended supersymmetry and hidden symmetries in one-dimensional matrix quantum mechanics”, Theoret. and Math. Phys., 186:1 (2016), 2–20  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. Ioffe M.V., Kolevatova E.V., Nishnianidze D.N., “SUSY method for the three-dimensional Schr?dinger equation with effective mass”, Phys. Lett. A, 380:41 (2016), 3349–3354  crossref  mathscinet  isi  elib  scopus
    4. Ioffe M.V., Kolevatova E.V., Nishnianidze D.N., “Solution of second order supersymmetrical intertwining relations in Minkowski plane”, J. Math. Phys., 57:8 (2016), 082102  crossref  mathscinet  zmath  isi  elib  scopus
    5. Chia-Chun Chou, Ching-Teh Li, “Asymptotic Functional Form Preservation Method with Supersymmetric Quantum Mechanics for Anharmonic Oscillators”, Aust. J. Chem., 69:9 (2016), 950  crossref
    6. M. V. Ioffe, E. V. Kolevatova, D. N. Nishnianidze, “Some properties of the shape-invariant two-dimensional Scarf II model”, Theoret. and Math. Phys., 185:1 (2015), 1445–1453  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    7. F. Cannata, M.V. Ioffe, E.V. Kolevatova, D.N. Nishnianidze, “New implicitly solvable potential produced by second order shape invariance”, Annals of Physics, 356 (2015), 438  crossref
    8. Bijan Bagchi, Abhijit Banerjee, Partha Mandal, “A generalized Swanson Hamiltonian in a second-derivative pseudo-supersymmetric framework”, Int. J. Mod. Phys. A, 30:09 (2015), 1550037  crossref
    9. Marquette I. Quesne Ch., “Combined State-Adding and State-Deleting Approaches To Type III Multi-Step Rationally Extended Potentials: Applications To Ladder Operators and Superintegrability”, J. Math. Phys., 55:11 (2014), 112103  crossref  isi
    10. M.S. Bardavelidze, M.V. Ioffe, D.N. Nishnianidze, “General solution of the two-dimensional intertwining relations for supercharges with hyperbolic (Lorentz) metrics”, Physics Letters A, 377:3-4 (2013), 195  crossref
    11. Chia-Chun Chou, Donald J. Kouri, “Multidimensional Supersymmetric Quantum Mechanics: Spurious States for the Tensor Sector Two Hamiltonian”, J. Phys. Chem. A, 117:16 (2013), 3442  crossref
    12. Chia-Chun Chou, Donald J. Kouri, “Multidimensional Supersymmetric Quantum Mechanics: A Scalar Hamiltonian Approach to Excited States by the Imaginary Time Propagation Method”, J. Phys. Chem. A, 117:16 (2013), 3449  crossref
    13. Andrianov A.A. Ioffe M.V., “Nonlinear Supersymmetric Quantum Mechanics: Concepts and Realizations”, J. Phys. A-Math. Theor., 45:50 (2012), 503001  crossref  isi
    14. Chia-Chun Chou, Thomas Markovich, Donald J. Kouri, “Adiabatic switching approach to multidimensional supersymmetric quantum mechanics for several excited states”, Molecular Physics, 110:23 (2012), 2977  crossref
    15. M. V. Ioffe, E. V. Krupitskaya, D. N. Nishnianidze, “Supersymmetrical separation of variables for Scarf II model: Partial solvability”, EPL, 98:1 (2012), 10013  crossref
    16. M.V. Ioffe, E.V. Krupitskaya, D.N. Nishnianidze, “Analytical solution of two-dimensional Scarf II model by means of SUSY methods”, Annals of Physics, 327:3 (2012), 764  crossref
    17. Christiane Quesne, “Revisiting the Symmetries of the Quantum Smorodinsky–Winternitz System in DD Dimensions”, SIGMA, 7 (2011), 035, 21 pp.  mathnet  crossref  mathscinet
    18. Tomoaki Nagasawa, Satoshi Ohya, Kazuki Sakamoto, Makoto Sakamoto, “Emergent Supersymmetry in Warped Backgrounds”, SIGMA, 7 (2011), 065, 13 pp.  mathnet  crossref  mathscinet
    19. F. Cannata, M. V. Ioffe, D. N. Nishnianidze, “New two-dimensional quantum models with shape invariance”, Journal of Mathematical Physics, 52:2 (2011)  crossref
    20. Mikhail V. Ioffe, “Supersymmetrical Separation of Variables in Two-Dimensional Quantum Mechanics”, SIGMA, 6 (2010), 075, 10 pp.  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:393
    Full-text PDF :154
    References:62
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025