Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1995, Volume 104, Number 3, Pages 393–419 (Mi tmf1346)  

This article is cited in 13 scientific papers (total in 13 papers)

Complex Whitham deformations in the problems with “integrable instability”

R. F. Bikbaev

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
References:
Abstract: The focusing nonlinear Schrödinger equation with finite-density boundary conditions as |x| is considered. The asymptotic behavior of the solution as t is investigated by means of the complex theory of ζ deformations of Whitham.
Received: 27.10.1994
English version:
Theoretical and Mathematical Physics, 1995, Volume 104, Issue 3, Pages 1078–1097
DOI: https://doi.org/10.1007/BF02068740
Bibliographic databases:
Language: Russian
Citation: R. F. Bikbaev, “Complex Whitham deformations in the problems with “integrable instability””, TMF, 104:3 (1995), 393–419; Theoret. and Math. Phys., 104:3 (1995), 1078–1097
Citation in format AMSBIB
\Bibitem{Bik95}
\by R.~F.~Bikbaev
\paper Complex Whitham deformations in the problems with ``integrable instability''
\jour TMF
\yr 1995
\vol 104
\issue 3
\pages 393--419
\mathnet{http://mi.mathnet.ru/tmf1346}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1607001}
\zmath{https://zbmath.org/?q=an:0853.35111}
\transl
\jour Theoret. and Math. Phys.
\yr 1995
\vol 104
\issue 3
\pages 1078--1097
\crossref{https://doi.org/10.1007/BF02068740}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995UE86800002}
Linking options:
  • https://www.mathnet.ru/eng/tmf1346
  • https://www.mathnet.ru/eng/tmf/v104/i3/p393
  • This publication is cited in the following 13 articles:
    1. Zhaoyu Wang, Meisen Chen, Engui Fan, “Long time asymptotics for the focusing nonlinear Schrödinger equation in the solitonic region with the presence of high-order discrete spectrum”, Journal of Mathematical Analysis and Applications, 505:2 (2022), 125635  crossref
    2. Anne Boutet de Monvel, Jonatan Lenells, Dmitry Shepelsky, “The Focusing NLS Equation with Step-Like Oscillating Background: Scenarios of Long-Time Asymptotics”, Commun. Math. Phys., 383:2 (2021), 893  crossref
    3. Kotlyarov V., Minakov A., “Dispersive Shock Wave, Generalized Laguerre Polynomials, and Asymptotic Solitons of the Focusing Nonlinear Schrodinger Equation”, J. Math. Phys., 60:12 (2019), 123501  crossref  isi
    4. Gino Biondini, Jonathan Lottes, “Nonlinear interactions between solitons and dispersive shocks in focusing media”, Phys. Rev. E, 99:2 (2019)  crossref
    5. Rustem R. Aydagulov, Alexander A. Minakov, “Initial-Boundary Value Problem for Stimulated Raman Scattering Model: Solvability of Whitham Type System of Equations Arising in Long-Time Asymptotic Analysis”, SIGMA, 14 (2018), 119, 19 pp.  mathnet  crossref
    6. Gino Biondini, “Riemann problems and dispersive shocks in self-focusing media”, Phys. Rev. E, 98:5 (2018)  crossref
    7. El G.A., Khamis E.G., Tovbis A., “Dam break problem for the focusing nonlinear Schrödinger equation and the generation of rogue waves”, Nonlinearity, 29:9 (2016), 2798–2836  crossref  mathscinet  zmath  isi  elib  scopus
    8. Kotlyarov V. Minakov A., “Modulated Elliptic Wave and Asymptotic Solitons in a Shock Problem To the Modified Korteweg-de Vries Equation”, J. Phys. A-Math. Theor., 48:30 (2015), 305201  crossref  isi
    9. V. Kotlyarov, A. Minakov, “Step-initial function to the mKdV equation: hyper-elliptic long-time asymptotics of the solution”, Zhurn. matem. fiz., anal., geom., 8:1 (2012), 38–62  mathnet  mathscinet  zmath
    10. A. Minakov, “Asymptotics of rarefaction wave solution to the mKdV equation”, Zhurn. matem. fiz., anal., geom., 7:1 (2011), 59–86  mathnet  mathscinet  zmath  elib
    11. Minakov A., “Long-time behavior of the solution to the mKdV equation with step-like initial data”, J. Phys. A: Math. Theor., 44:8 (2011), 085206  crossref  isi
    12. V. L. Vereshchagin, “Single-Phase Averaging for the Ablowitz–Ladik Chain”, Math. Notes, 87:6 (2010), 797–806  mathnet  crossref  crossref  mathscinet  isi  elib
    13. Kotlyarov V., Minakov A., “Riemann–Hilbert problem to the modified Korteveg-de Vries equation: Long-time dynamics of the steplike initial data”, J Math Phys, 51:9 (2010), 093506  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:406
    Full-text PDF :131
    References:81
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025