Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1995, Volume 104, Number 2, Pages 356–367 (Mi tmf1344)  

This article is cited in 139 scientific papers (total in 139 papers)

Darboux transformation, factorization, supersymmetry in one-dimensional quantum mechanics

V. G. Bagrova, B. F. Samsonovb

a Tomsk State University
b Institute of High Current Electronics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: We introduce an N-order Darboux transformation operator as a particular case of general transformation operators. It is shown that this operator can always be represented as a product of N first-order Darboux transformation operators. The relationship between this transformation and the factorization method is investigated. Supercharge operators are introduced. They are differential operators of order N. It is shown that these operators and super-Hamiltonian form a superalgebra of order N. For N=2, we have a quadratic superalgebra analogous to the Sklyanin quadratic algebras. The relationship between the transformation introduced and the inverse scattering problem in quantum mechanics is established. An elementary N-parametric potential that has exactly N predetermined discrete spectrum levels is constructed. The paper concludes with some examples of new exactly soluble potentials.
Received: 10.10.1994
English version:
Theoretical and Mathematical Physics, 1995, Volume 104, Issue 2, Pages 1051–1060
DOI: https://doi.org/10.1007/BF02065985
Bibliographic databases:
Language: Russian
Citation: V. G. Bagrov, B. F. Samsonov, “Darboux transformation, factorization, supersymmetry in one-dimensional quantum mechanics”, TMF, 104:2 (1995), 356–367; Theoret. and Math. Phys., 104:2 (1995), 1051–1060
Citation in format AMSBIB
\Bibitem{BagSam95}
\by V.~G.~Bagrov, B.~F.~Samsonov
\paper Darboux transformation, factorization, supersymmetry in one-dimensional quantum mechanics
\jour TMF
\yr 1995
\vol 104
\issue 2
\pages 356--367
\mathnet{http://mi.mathnet.ru/tmf1344}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1488681}
\zmath{https://zbmath.org/?q=an:0857.34070}
\transl
\jour Theoret. and Math. Phys.
\yr 1995
\vol 104
\issue 2
\pages 1051--1060
\crossref{https://doi.org/10.1007/BF02065985}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995UD33400013}
Linking options:
  • https://www.mathnet.ru/eng/tmf1344
  • https://www.mathnet.ru/eng/tmf/v104/i2/p356
  • This publication is cited in the following 139 articles:
    1. Ian Marquette, “Cubic algebras, induced representations and general solution of the exceptional Laguerre equation X1”, Physica D: Nonlinear Phenomena, 473 (2025), 134547  crossref
    2. Valery Shchesnovich, “Exact solution for a class of quantum models of interacting bosons”, J. Phys. A: Math. Theor., 58:11 (2025), 115204  crossref
    3. Yuta Nasuda, Nobuyuki Sawado, “Harmonic oscillator with a step and its isospectral properties”, Phys. Scr., 99:4 (2024), 045212  crossref
    4. Rachel Bailey, Maxim Derevyagin, “DEK-type orthogonal polynomials and a modification of the Christoffel formula”, Journal of Computational and Applied Mathematics, 438 (2024), 115561  crossref
    5. I A Bocanegra-Garay, L Hernández-Sánchez, I Ramos-Prieto, F Soto-Eguibar, H M Moya-Cessa, “Optical ladder operators in the Glauber-Fock oscillator array”, Phys. Scr., 99:3 (2024), 035216  crossref
    6. Dayeong Lee, Hyungchul Park, Seungkyun Park, Namkyoo Park, Sunkyu Yu, Advanced Photonics Congress 2023, 2023, NoTh2C.3  crossref
    7. Dayeong Lee, Hyungchul Park, Sunkyu Yu, “Engineering isospectrality in multidimensional photonic systems”, Nanophotonics, 12:13 (2023), 2593  crossref
    8. Dipan Saha, Prasanta Chatterjee, Santanu Raut, “Multi-shock and soliton solutions of the Burgers equation employing Darboux transformation with the help of the Lax pair”, Pramana - J Phys, 97:2 (2023)  crossref
    9. M Y Tan, M S Nurisya, H Zainuddin, “On the green factorization method and supersymmetry”, Phys. Scr., 98:1 (2023), 015027  crossref
    10. Seungkyun Park, Ikbeom Lee, Jungmin Kim, Namkyoo Park, Sunkyu Yu, “Hearing the shape of a drum for light: isospectrality in photonics”, Nanophotonics, 11:11 (2022), 2763  crossref
    11. Tapas Kumar Jana, “Variety of double knock out barrier option for sustainable financial management”, AIMSES, 9:5 (2022), 708  crossref
    12. Lulin Xiong, Xin Tan, Shikun Zhong, Wei Cheng, Guang Luo, “A New Solvable Generalized Trigonometric Tangent Potential Based on SUSYQM”, Symmetry, 14:8 (2022), 1593  crossref
    13. I. Marquette, K. Zelaya, “On the general family of third-order shape-invariant Hamiltonians related to generalized Hermite polynomials”, Physica D: Nonlinear Phenomena, 442 (2022), 133529  crossref
    14. Felipe A. Asenjo, Sergio A. Hojman, Héctor M. Moya-Cessa, Francisco Soto-Eguibar, “Supersymmetric relativistic quantum mechanics in time-domain”, Physics Letters A, 450 (2022), 128371  crossref
    15. Axel Schulze-Halberg, “Higher-order Darboux transformations and Wronskian representations for Schrödinger equations with quadratically energy-dependent potentials”, Journal of Mathematical Physics, 61:2 (2020)  crossref
    16. Axel Schulze-Halberg, “Generalized Schrödinger equations with quadratical energy-dependence in the potential: Darboux transformations and application to the Heun class”, Journal of Mathematical Physics, 61:8 (2020)  crossref
    17. S Cruz y Cruz, R Razo, O Rosas-Ortiz, K Zelaya, “Coherent states for exactly solvable time-dependent oscillators generated by Darboux transformations”, Phys. Scr., 95:4 (2020), 044009  crossref
    18. Ekaterina Shemyakova, “Classification of Darboux transformations for operators of the form ∂x∂y+a∂x+b∂y+c”, Illinois J. Math., 64:1 (2020)  crossref
    19. Kyle R. Bryenton, Nasser Saad, “Exactly solvable Schrödinger eigenvalue problems for new anharmonic potentials with variable bumps and depths”, Eur. Phys. J. Plus, 135:4 (2020)  crossref
    20. Axel Schulze-Halberg, Matthew Paskash, “Wronskian representation of second-order Darboux transformations for Schrödinger equations with quadratically energy-dependent potentials”, Phys. Scr., 95:1 (2020), 015001  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:923
    Full-text PDF :598
    References:69
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025