Abstract:
In this paper a mathematical proof is presented for the fact that the resonance amplitude suffers a jump in the neighborhood of a resonance energy level.
Citation:
A. A. Arsen'ev, “On resonance properties of scattering amplitude for Schrödinger equation with trapping potential”, TMF, 104:2 (1995), 214–232; Theoret. and Math. Phys., 104:2 (1995), 935–949
\Bibitem{Ars95}
\by A.~A.~Arsen'ev
\paper On resonance properties of scattering amplitude for Schr\"odinger equation with trapping potential
\jour TMF
\yr 1995
\vol 104
\issue 2
\pages 214--232
\mathnet{http://mi.mathnet.ru/tmf1333}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1488671}
\zmath{https://zbmath.org/?q=an:0856.35104}
\transl
\jour Theoret. and Math. Phys.
\yr 1995
\vol 104
\issue 2
\pages 935--949
\crossref{https://doi.org/10.1007/BF02065974}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995UD33400002}
Linking options:
https://www.mathnet.ru/eng/tmf1333
https://www.mathnet.ru/eng/tmf/v104/i2/p214
This publication is cited in the following 5 articles:
A. A. Arsen'ev, “Fermi Rule and Scattering Amplitude Resonances”, Theoret. and Math. Phys., 134:3 (2003), 296–307
Yu. P. Chuburin, “Schrödinger operator eigenvalue (resonance) on a zone boundary”, Theoret. and Math. Phys., 126:2 (2001), 161–168
Sjostrand J., “Quantum Resonances and trapped trajectories”, Long Time Behaviour of Classical and Quantum Systems, Series on Concrete and Applicable Mathematics, 1, 2001, 33–61
A. A. Arsen'ev, “Estimation of the imaginary part of the scattering matrix pole for the three-dimensional Schrödinger equation with a trap potential”, Theoret. and Math. Phys., 114:2 (1998), 215–219
A. A. Arsen'ev, “Resonance properties of the scattering matrix for the one-dimensional Schrödinger operator with a trapping potential”, Sb. Math., 187:6 (1996), 785–802