Abstract:
Some relations between different objects associated with quantum affine algebras are reviewed. It is shown that the Frenkel–Jing bosonization of a new realization of the quantum affine algebra $U_q(\widehat{\mathfrak{sl}}_2)$ as well as bosonization of $L$-operators for this algebra can be obtained from Zamolodchikov–Faddeev algebras defined by the quantum $R$-matrix satisfying unitarity and crossing-symmetry conditions.
Citation:
S. Z. Pakulyak, “On the bosonization of $L$-operators for quantum affine algebra $U_q(\mathfrak{sl}_2)$”, TMF, 104:1 (1995), 64–77; Theoret. and Math. Phys., 104:1 (1995), 810–822
\Bibitem{Pak95}
\by S.~Z.~Pakulyak
\paper On the bosonization of $L$-operators for quantum affine algebra $U_q(\mathfrak{sl}_2)$
\jour TMF
\yr 1995
\vol 104
\issue 1
\pages 64--77
\mathnet{http://mi.mathnet.ru/tmf1326}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1602874}
\zmath{https://zbmath.org/?q=an:0860.17020}
\transl
\jour Theoret. and Math. Phys.
\yr 1995
\vol 104
\issue 1
\pages 810--822
\crossref{https://doi.org/10.1007/BF02066656}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TX90500007}
Linking options:
https://www.mathnet.ru/eng/tmf1326
https://www.mathnet.ru/eng/tmf/v104/i1/p64
This publication is cited in the following 1 articles:
Baseilhac P., Belliard S., “The central extension of the reflection equations and an analog of Miki's formula”, J. Phys. A: Math. Theor., 44:41 (2011), 415205