Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1995, Volume 103, Number 3, Pages 437–460 (Mi tmf1314)  

This article is cited in 13 scientific papers (total in 13 papers)

Integrable many body systems in the field theories

A. S. Gorskyab

a Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
b Uppsala University
References:
Abstract: We review recent results which clarify the role of the integrable many-body problems in the quantum field theory framework. They describe the dynamics of the topological degrees of freedom in the theories which are obtained by perturbing the topological ones by the proper Hamiltonians and sources. Interpretation of the many-body dynamics as a motion on the different moduli spaces as well as the property of duality is discussed. Tower of many-body systems can be derived from a tower of the field theories with appropriate phase spaces which have a transparent interpretation in terms of the group theory. The appearance of Calogero-type systems in different physical phenomena is mentioned.
English version:
Theoretical and Mathematical Physics, 1995, Volume 103, Issue 3, Pages 681–700
DOI: https://doi.org/10.1007/BF02065867
Bibliographic databases:
Language: English
Citation: A. S. Gorsky, “Integrable many body systems in the field theories”, TMF, 103:3 (1995), 437–460; Theoret. and Math. Phys., 103:3 (1995), 681–700
Citation in format AMSBIB
\Bibitem{Gor95}
\by A.~S.~Gorsky
\paper Integrable many body systems in the field theories
\jour TMF
\yr 1995
\vol 103
\issue 3
\pages 437--460
\mathnet{http://mi.mathnet.ru/tmf1314}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1472310}
\zmath{https://zbmath.org/?q=an:0855.35106}
\transl
\jour Theoret. and Math. Phys.
\yr 1995
\vol 103
\issue 3
\pages 681--700
\crossref{https://doi.org/10.1007/BF02065867}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TP54200007}
Linking options:
  • https://www.mathnet.ru/eng/tmf1314
  • https://www.mathnet.ru/eng/tmf/v103/i3/p437
  • This publication is cited in the following 13 articles:
    1. L. Fehér, I. Marshall, “Global Description of Action-Angle Duality for a Poisson–Lie Deformation of the Trigonometric
      $\varvec{\mathrm {BC}_n}$
      BC n
      Sutherland System”, Ann. Henri Poincaré, 20:4 (2019), 1217  crossref
    2. Leonardo Rastelli, Shlomo S. Razamat, Mathematical Physics Studies, New Dualities of Supersymmetric Gauge Theories, 2016, 261  crossref
    3. Ian Marshall, “A New Model in the Calogero–Ruijsenaars Family”, Commun. Math. Phys., 338:2 (2015), 563  crossref
    4. L. Fehér, T. F. Görbe, “Duality between the trigonometricBCnSutherland system and a completed rational Ruijsenaars–Schneider–van Diejen system”, Journal of Mathematical Physics, 55:10 (2014), 102704  crossref
    5. Gadde A., Rastelli L., Razamat Sh.S., Yan W., “Gauge Theories and Macdonald Polynomials”, Commun. Math. Phys., 319:1 (2013), 147–193  crossref  isi
    6. Gaiotto D., Rastelli L., Razamat Sh.S., “Bootstrapping the Superconformal Index with Surface Defects”, J. High Energy Phys., 2013, no. 1, 022  crossref  isi
    7. L. Fehér, V. Ayadi, “Trigonometric Sutherland systems and their Ruijsenaars duals from symplectic reduction”, Journal of Mathematical Physics, 51:10 (2010)  crossref
    8. A. Chervov, “Raising Operators for the Whittaker Wave Functions of the Toda Chain and Intertwining Operators”, J Math Sci, 128:4 (2005), 3121  crossref
    9. A. S. Gorsky, “Integrable many-body systems and gauge theories”, Theoret. and Math. Phys., 125:1 (2000), 1305–1348  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    10. Ruijsenaars, SNM, “Hilbert space theory for reflectionless relativistic potentials”, Publications of the Research Institute For Mathematical Sciences, 36:6 (2000), 707  crossref  mathscinet  zmath  isi
    11. Tomasz Brzeziński, Cezary Gonera, Piotr Kosiński, Paweł Maślanka, “A note on the action-angle variables for the rational Calogero–Moser system”, Physics Letters A, 268:3 (2000), 178  crossref
    12. J. Avan, Calogero—Moser— Sutherland Models, 2000, 1  crossref
    13. G E Arutyunov, S A Frolov, “On the Hamiltonian structure of the spin Ruijsenaars-Schneider model”, J. Phys. A: Math. Gen., 31:18 (1998), 4203  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:324
    Full-text PDF :167
    References:58
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025