Abstract:
We review recent results which clarify the role of the integrable many-body problems in the quantum field theory framework. They describe the dynamics of the topological degrees of freedom in the theories which are obtained by perturbing the topological ones by the proper Hamiltonians and sources. Interpretation of the many-body dynamics as a motion on the different moduli spaces as well as the property of duality is discussed. Tower of many-body systems can be derived from a tower of the field theories with appropriate phase spaces which have a transparent interpretation in terms of the group theory. The appearance of Calogero-type systems in different physical phenomena is mentioned.
Citation:
A. S. Gorsky, “Integrable many body systems in the field theories”, TMF, 103:3 (1995), 437–460; Theoret. and Math. Phys., 103:3 (1995), 681–700
\Bibitem{Gor95}
\by A.~S.~Gorsky
\paper Integrable many body systems in the field theories
\jour TMF
\yr 1995
\vol 103
\issue 3
\pages 437--460
\mathnet{http://mi.mathnet.ru/tmf1314}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1472310}
\zmath{https://zbmath.org/?q=an:0855.35106}
\transl
\jour Theoret. and Math. Phys.
\yr 1995
\vol 103
\issue 3
\pages 681--700
\crossref{https://doi.org/10.1007/BF02065867}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TP54200007}
Linking options:
https://www.mathnet.ru/eng/tmf1314
https://www.mathnet.ru/eng/tmf/v103/i3/p437
This publication is cited in the following 13 articles:
L. Fehér, I. Marshall, “Global Description of Action-Angle Duality for a Poisson–Lie Deformation of the Trigonometric $\varvec{\mathrm {BC}_n}$ BC
n Sutherland System”, Ann. Henri Poincaré, 20:4 (2019), 1217
Leonardo Rastelli, Shlomo S. Razamat, Mathematical Physics Studies, New Dualities of Supersymmetric Gauge Theories, 2016, 261
Ian Marshall, “A New Model in the Calogero–Ruijsenaars Family”, Commun. Math. Phys., 338:2 (2015), 563
L. Fehér, T. F. Görbe, “Duality between the trigonometricBCnSutherland system and a completed rational Ruijsenaars–Schneider–van Diejen system”, Journal of Mathematical Physics, 55:10 (2014), 102704
Gadde A., Rastelli L., Razamat Sh.S., Yan W., “Gauge Theories and Macdonald Polynomials”, Commun. Math. Phys., 319:1 (2013), 147–193
Gaiotto D., Rastelli L., Razamat Sh.S., “Bootstrapping the Superconformal Index with Surface Defects”, J. High Energy Phys., 2013, no. 1, 022
L. Fehér, V. Ayadi, “Trigonometric Sutherland systems and their Ruijsenaars duals from symplectic reduction”, Journal of Mathematical Physics, 51:10 (2010)
A. Chervov, “Raising Operators for the Whittaker Wave Functions of the Toda Chain and Intertwining Operators”, J Math Sci, 128:4 (2005), 3121
A. S. Gorsky, “Integrable many-body systems and gauge theories”, Theoret. and Math. Phys., 125:1 (2000), 1305–1348
Ruijsenaars, SNM, “Hilbert space theory for reflectionless relativistic potentials”, Publications of the Research Institute For Mathematical Sciences, 36:6 (2000), 707
Tomasz Brzeziński, Cezary Gonera, Piotr Kosiński, Paweł Maślanka, “A note on the action-angle variables for the rational Calogero–Moser system”, Physics Letters A, 268:3 (2000), 178
J. Avan, Calogero—Moser— Sutherland Models, 2000, 1
G E Arutyunov, S A Frolov, “On the Hamiltonian structure of the spin Ruijsenaars-Schneider model”, J. Phys. A: Math. Gen., 31:18 (1998), 4203