Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1995, Volume 103, Number 2, Pages 179–191 (Mi tmf1295)  

This article is cited in 30 scientific papers (total in 30 papers)

A technique for calculating the γ-matrix structures of the diagrams of a total four-fermion interaction with infinite number of vertices d=2+ϵ dimensional regularization

A. N. Vasil'ev, S. È. Derkachev, N. A. Kivel'

B. P. Konstantinov Petersburg Nuclear Physics Institute, Russian Academy of Sciences
References:
Abstract: It is known [1] that in the dimensional regularization d=2+ϵ any four-fermion interaction generates an infinite number of the counterterms (ˉψγ(n)α1αnψ)2, where γ(n)α1αnAs[γα1γαn] is the antisymmetrized product of γ-matrices. A total multiplicatively renormalizable model includes all such vertices and, therefore, calculation of γ-matrix multipliers of the corresponding diagrams is a non-trivial task. An effective technique for performing such calculations is proposed. It includes: the realization of the γ-matrices by the operator free fermion field, utilization of generation functions and functionals and different versions of Wick theorem, reduction of the d-dimensional problem to d=1. The general method is illustrated by the calculations of γ-factors of one- and two-loop diagrams with an arbitrary set of vertices γ(n)γ(n).
Received: 25.05.1994
English version:
Theoretical and Mathematical Physics, 1995, Volume 103, Issue 2, Pages 487–495
DOI: https://doi.org/10.1007/BF02274026
Bibliographic databases:
Language: Russian
Citation: A. N. Vasil'ev, S. È. Derkachev, N. A. Kivel', “A technique for calculating the γ-matrix structures of the diagrams of a total four-fermion interaction with infinite number of vertices d=2+ϵ dimensional regularization”, TMF, 103:2 (1995), 179–191; Theoret. and Math. Phys., 103:2 (1995), 487–495
Citation in format AMSBIB
\Bibitem{VasDerKiv95}
\by A.~N.~Vasil'ev, S.~\`E.~Derkachev, N.~A.~Kivel'
\paper A~technique for calculating the $\gamma$-matrix structures of the diagrams of a~total four-fermion interaction with infinite number of vertices $d=2+\epsilon$ dimensional regularization
\jour TMF
\yr 1995
\vol 103
\issue 2
\pages 179--191
\mathnet{http://mi.mathnet.ru/tmf1295}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1470942}
\zmath{https://zbmath.org/?q=an:0960.81539}
\transl
\jour Theoret. and Math. Phys.
\yr 1995
\vol 103
\issue 2
\pages 487--495
\crossref{https://doi.org/10.1007/BF02274026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TD56100001}
Linking options:
  • https://www.mathnet.ru/eng/tmf1295
  • https://www.mathnet.ru/eng/tmf/v103/i2/p179
  • This publication is cited in the following 30 articles:
    1. Dmitri Bykov, “$\beta$-function of the level-zero Gross–Neveu model”, SciPost Phys., 15:4 (2023), 127–27  mathnet  crossref  isi
    2. Gracey J.A., “Symmetric Point Flavor Singlet Axial Vector Current Renormalization At Two Loops”, Phys. Rev. D, 102:3 (2020), 036002  crossref  isi
    3. Gracey J.A., “Off-Shell Quark Bilinear Operator Green'S Functions At Two Loops”, Phys. Rev. D, 99:12 (2019), 125017  crossref  isi
    4. Gracey J.A. Simms R.M., “Renormalization of QCD in the Interpolating Momentum Subtraction Scheme At Three Loops”, Phys. Rev. D, 97:8 (2018), 085016  crossref  isi
    5. Ji Ya. Manashov A.N., “Operator Mixing in Fermionic Cfts in Noninteger Dimensions”, Phys. Rev. D, 98:10 (2018), 105001  crossref  mathscinet  isi  scopus
    6. Yao Ji, Michael Kelly, “Unitarity violation in noninteger dimensional Gross-Neveu-Yukawa model”, Phys. Rev. D, 97:10 (2018)  crossref
    7. Braun V.M. Bruns P.C. Collins S. Gracey J.A. Gruber M. Goeckeler M. Hutzler F. Perez-Rubio P. Schaefer A. Soeldner W. Sternbeck A. Wein Ph., “The Rho-Meson Light-Cone Distribution Amplitudes From Lattice QCD”, J. High Energy Phys., 2017, no. 4, 082  crossref  isi
    8. Gracey J.A., “Symmetric Point Four-Point Functions At One Loop in QCD”, Phys. Rev. D, 95:6 (2017), 065013  crossref  isi
    9. Gracey J.A. Luthe T. Schroder Y., “Four loop renormalization of the Gross-Neveu model”, Phys. Rev. D, 94:12 (2016), 125028  crossref  mathscinet  isi
    10. Bell J.M. Gracey J.A., “Bilinear quark operator renormalization at generalized symmetric point”, Phys. Rev. D, 93:6 (2016), 065031  crossref  mathscinet  isi  elib  scopus
    11. Michael I. Buchoff, Michael Wagman, “Perturbative renormalization of neutron-antineutron operators”, Phys. Rev. D, 93:1 (2016)  crossref
    12. J. A. Gracey, R. M. Simms, “Banks-Zaks fixed point analysis in momentum subtraction schemes”, Phys. Rev. D, 91:8 (2015)  crossref
    13. Gracey J.A., “Off-Shell Two-Loop QCD Vertices”, Phys. Rev. D, 90:2 (2014), 025014  crossref  isi
    14. Bell J.M. Gracey J.A., “Momentum Subtraction Scheme Renormalization Group Functions in the Maximal Abelian Gauge”, Phys. Rev. D, 88:8 (2013), 085027  crossref  isi
    15. D Chicherin, S Derkachov, A P Isaev, “The spinorialR-matrix”, J. Phys. A: Math. Theor., 46:48 (2013), 485201  crossref
    16. D. Chicherin, S. Derkachov, A. P. Isaev, “Conformal algebra: R-matrix and star-triangle relation”, J. High Energ. Phys., 2013:4 (2013)  crossref
    17. Gracey J.A., “Power Corrections to Symmetric Point Vertices in Gribov-Zwanziger Theory”, Phys. Rev. D, 86:10 (2012), 105029  crossref  isi
    18. Gracey J.A., “Three Loop Renormalization of 3-Quark Operators in QCD”, J. High Energy Phys., 2012, no. 9, 052  crossref  isi
    19. Gracey J.A., “Two loop QCD vertices at the symmetric point”, Phys Rev D, 84:8 (2011), 085011  crossref  isi
    20. Kraenkl S., Manashov A., “Two-loop renormalization of three-quark operators in QCD”, Phys Lett B, 703:4 (2011), 519–523  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:418
    Full-text PDF :142
    References:71
    First page:3
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025