Teoreticheskaya i Matematicheskaya Fizika, 1995, Volume 103, Number 2, Pages 179–191(Mi tmf1295)
This article is cited in 30 scientific papers (total in 30 papers)
A technique for calculating the γ-matrix structures of the diagrams of a total four-fermion interaction with infinite number of vertices d=2+ϵ dimensional regularization
Abstract:
It is known [1] that in the dimensional regularization d=2+ϵ any four-fermion interaction generates an infinite number of the counterterms (ˉψγ(n)α1…αnψ)2, where γ(n)α1…αn≡As[γα1…γαn] is the antisymmetrized product of γ-matrices. A total multiplicatively renormalizable model includes all such vertices and, therefore, calculation of γ-matrix multipliers of the corresponding diagrams is a non-trivial task. An effective technique for performing such calculations is proposed. It includes: the realization of the γ-matrices by the operator free fermion field, utilization of generation functions and functionals and different versions of Wick theorem, reduction of the d-dimensional problem to d=1. The general method is illustrated by the calculations of γ-factors of one- and two-loop diagrams with an arbitrary set of vertices γ(n)⊗γ(n).
Citation:
A. N. Vasil'ev, S. È. Derkachev, N. A. Kivel', “A technique for calculating the γ-matrix structures of the diagrams of a total four-fermion interaction with infinite number of vertices d=2+ϵ dimensional regularization”, TMF, 103:2 (1995), 179–191; Theoret. and Math. Phys., 103:2 (1995), 487–495
\Bibitem{VasDerKiv95}
\by A.~N.~Vasil'ev, S.~\`E.~Derkachev, N.~A.~Kivel'
\paper A~technique for calculating the $\gamma$-matrix structures of the diagrams of a~total four-fermion interaction with infinite number of vertices $d=2+\epsilon$ dimensional regularization
\jour TMF
\yr 1995
\vol 103
\issue 2
\pages 179--191
\mathnet{http://mi.mathnet.ru/tmf1295}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1470942}
\zmath{https://zbmath.org/?q=an:0960.81539}
\transl
\jour Theoret. and Math. Phys.
\yr 1995
\vol 103
\issue 2
\pages 487--495
\crossref{https://doi.org/10.1007/BF02274026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TD56100001}
Linking options:
https://www.mathnet.ru/eng/tmf1295
https://www.mathnet.ru/eng/tmf/v103/i2/p179
This publication is cited in the following 30 articles:
Dmitri Bykov, “$\beta$-function of the level-zero Gross–Neveu model”, SciPost Phys., 15:4 (2023), 127–27
Gracey J.A., “Symmetric Point Flavor Singlet Axial Vector Current Renormalization At Two Loops”, Phys. Rev. D, 102:3 (2020), 036002
Gracey J.A., “Off-Shell Quark Bilinear Operator Green'S Functions At Two Loops”, Phys. Rev. D, 99:12 (2019), 125017
Gracey J.A. Simms R.M., “Renormalization of QCD in the Interpolating Momentum Subtraction Scheme At Three Loops”, Phys. Rev. D, 97:8 (2018), 085016
Ji Ya. Manashov A.N., “Operator Mixing in Fermionic Cfts in Noninteger Dimensions”, Phys. Rev. D, 98:10 (2018), 105001
Yao Ji, Michael Kelly, “Unitarity violation in noninteger dimensional Gross-Neveu-Yukawa model”, Phys. Rev. D, 97:10 (2018)
Braun V.M. Bruns P.C. Collins S. Gracey J.A. Gruber M. Goeckeler M. Hutzler F. Perez-Rubio P. Schaefer A. Soeldner W. Sternbeck A. Wein Ph., “The Rho-Meson Light-Cone Distribution Amplitudes From Lattice QCD”, J. High Energy Phys., 2017, no. 4, 082
Gracey J.A., “Symmetric Point Four-Point Functions At One Loop in QCD”, Phys. Rev. D, 95:6 (2017), 065013
Gracey J.A. Luthe T. Schroder Y., “Four loop renormalization of the Gross-Neveu model”, Phys. Rev. D, 94:12 (2016), 125028
Bell J.M. Gracey J.A., “Bilinear quark operator renormalization at generalized symmetric point”, Phys. Rev. D, 93:6 (2016), 065031
Michael I. Buchoff, Michael Wagman, “Perturbative renormalization of neutron-antineutron operators”, Phys. Rev. D, 93:1 (2016)
J. A. Gracey, R. M. Simms, “Banks-Zaks fixed point analysis in momentum subtraction schemes”, Phys. Rev. D, 91:8 (2015)