Abstract:
In the framework of the classical Laplace–Darboux theory the formula of the fractional-rational transformations of the solutions of the linear second order partial differential equation with the two independent variables is established. The one-dimensional reduction discussed briefly.
Citation:
A. B. Shabat, “On the Laplace–Darboux theory of transformations”, TMF, 103:1 (1995), 170–175; Theoret. and Math. Phys., 103:1 (1995), 482–485
\Bibitem{Sha95}
\by A.~B.~Shabat
\paper On the Laplace--Darboux theory of transformations
\jour TMF
\yr 1995
\vol 103
\issue 1
\pages 170--175
\mathnet{http://mi.mathnet.ru/tmf1294}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1470941}
\zmath{https://zbmath.org/?q=an:0855.35004}
\transl
\jour Theoret. and Math. Phys.
\yr 1995
\vol 103
\issue 1
\pages 482--485
\crossref{https://doi.org/10.1007/BF02069791}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RZ96200013}
Linking options:
https://www.mathnet.ru/eng/tmf1294
https://www.mathnet.ru/eng/tmf/v103/i1/p170
This publication is cited in the following 14 articles:
R. Ch. Kulaev, A. B. Shabat, “Darboux system and separation of variables in the Goursat problem for a third order equation in R3”, Russian Math. (Iz. VUZ), 64:4 (2020), 35–43
Ekaterina Shemyakova, “Classification of Darboux transformations for operators of the form ∂x∂y+a∂x+b∂y+c”, Illinois J. Math., 64:1 (2020)
S. V. Smirnov, “Factorization of Darboux–Laplace transformations for discrete hyperbolic operators”, Theoret. and Math. Phys., 199:2 (2019), 621–636
David Hobby, Ekaterina Shemyakova, “Classification of Multidimensional Darboux Transformations: First Order and Continued Type”, SIGMA, 13 (2017), 010, 20 pp.
Li S. Shemyakova E. Voronov T., “Differential Operators on the Superline, Berezinians, and Darboux Transformations”, Lett. Math. Phys., 107:9 (2017), 1689–1714
S. V. Smirnov, “Darboux integrability of discrete two-dimensional Toda lattices”, Theoret. and Math. Phys., 182:2 (2015), 189–210
Ekaterina Shemyakova, “Darboux transformations for factorable Laplace operators”, Program Comput Soft, 40:3 (2014), 151
P. G. Grinevich, S. P. Novikov, “Discrete SLn-connections and self-adjoint difference operators on two-dimensional manifolds”, Russian Math. Surveys, 68:5 (2013), 861–887
S. V. Smirnov, “Semidiscrete Toda lattices”, Theoret. and Math. Phys., 172:3 (2012), 1217–1231
V. G. Marikhin, “Solutions of two-dimensional Schrödinger-type equations in a magnetic field”, Theoret. and Math. Phys., 168:2 (2011), 1041–1047
V. G. Marikhin, “The dressing method and separation of variables: The two-dimensional case”, Theoret. and Math. Phys., 161:3 (2009), 1599–1603
E. A. Kartashova, “A hierarchy of generalized invariants for linear partial differential
operators”, Theoret. and Math. Phys., 147:3 (2006), 839–846
A. V. Yurov, “Conjugate chains of discrete symmetries in (1+2) nonlinear equations”, Theoret. and Math. Phys., 119:3 (1999), 731–738
A. I. Zenchuk, “Some generalizations of the 2-dimensional Toda chain and sh-Gordon equation”, Theoret. and Math. Phys., 110:2 (1997), 183–189