Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1995, Volume 103, Number 1, Pages 170–175 (Mi tmf1294)  

This article is cited in 14 scientific papers (total in 14 papers)

On the Laplace–Darboux theory of transformations

A. B. Shabat

L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
References:
Abstract: In the framework of the classical Laplace–Darboux theory the formula of the fractional-rational transformations of the solutions of the linear second order partial differential equation with the two independent variables is established. The one-dimensional reduction discussed briefly.
Received: 28.02.1995
English version:
Theoretical and Mathematical Physics, 1995, Volume 103, Issue 1, Pages 482–485
DOI: https://doi.org/10.1007/BF02069791
Bibliographic databases:
Language: Russian
Citation: A. B. Shabat, “On the Laplace–Darboux theory of transformations”, TMF, 103:1 (1995), 170–175; Theoret. and Math. Phys., 103:1 (1995), 482–485
Citation in format AMSBIB
\Bibitem{Sha95}
\by A.~B.~Shabat
\paper On the Laplace--Darboux theory of transformations
\jour TMF
\yr 1995
\vol 103
\issue 1
\pages 170--175
\mathnet{http://mi.mathnet.ru/tmf1294}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1470941}
\zmath{https://zbmath.org/?q=an:0855.35004}
\transl
\jour Theoret. and Math. Phys.
\yr 1995
\vol 103
\issue 1
\pages 482--485
\crossref{https://doi.org/10.1007/BF02069791}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RZ96200013}
Linking options:
  • https://www.mathnet.ru/eng/tmf1294
  • https://www.mathnet.ru/eng/tmf/v103/i1/p170
  • This publication is cited in the following 14 articles:
    1. R. Ch. Kulaev, A. B. Shabat, “Darboux system and separation of variables in the Goursat problem for a third order equation in R3”, Russian Math. (Iz. VUZ), 64:4 (2020), 35–43  mathnet  crossref  crossref  isi
    2. Ekaterina Shemyakova, “Classification of Darboux transformations for operators of the form ∂x∂y+a∂x+b∂y+c”, Illinois J. Math., 64:1 (2020)  crossref
    3. S. V. Smirnov, “Factorization of Darboux–Laplace transformations for discrete hyperbolic operators”, Theoret. and Math. Phys., 199:2 (2019), 621–636  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    4. David Hobby, Ekaterina Shemyakova, “Classification of Multidimensional Darboux Transformations: First Order and Continued Type”, SIGMA, 13 (2017), 010, 20 pp.  mathnet  crossref
    5. Li S. Shemyakova E. Voronov T., “Differential Operators on the Superline, Berezinians, and Darboux Transformations”, Lett. Math. Phys., 107:9 (2017), 1689–1714  crossref  isi
    6. S. V. Smirnov, “Darboux integrability of discrete two-dimensional Toda lattices”, Theoret. and Math. Phys., 182:2 (2015), 189–210  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    7. Ekaterina Shemyakova, “Darboux transformations for factorable Laplace operators”, Program Comput Soft, 40:3 (2014), 151  crossref
    8. P. G. Grinevich, S. P. Novikov, “Discrete SLn-connections and self-adjoint difference operators on two-dimensional manifolds”, Russian Math. Surveys, 68:5 (2013), 861–887  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  elib  elib
    9. S. V. Smirnov, “Semidiscrete Toda lattices”, Theoret. and Math. Phys., 172:3 (2012), 1217–1231  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    10. V. G. Marikhin, “Solutions of two-dimensional Schrödinger-type equations in a magnetic field”, Theoret. and Math. Phys., 168:2 (2011), 1041–1047  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    11. V. G. Marikhin, “The dressing method and separation of variables: The two-dimensional case”, Theoret. and Math. Phys., 161:3 (2009), 1599–1603  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    12. E. A. Kartashova, “A hierarchy of generalized invariants for linear partial differential operators”, Theoret. and Math. Phys., 147:3 (2006), 839–846  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. A. V. Yurov, “Conjugate chains of discrete symmetries in (1+2) nonlinear equations”, Theoret. and Math. Phys., 119:3 (1999), 731–738  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    14. A. I. Zenchuk, “Some generalizations of the 2-dimensional Toda chain and sh-Gordon equation”, Theoret. and Math. Phys., 110:2 (1997), 183–189  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:651
    Full-text PDF :234
    References:86
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025