Abstract:
Some estimates of the norm of resolvent of Dirac operator on n-dimensional tores (n⩾2) for complex values of quasimomentum are given. The absolutely continuity of the spectrum of periodical Dirac operator with potential V∈Lβloc(R3), β>3, is proved.
Citation:
L. I. Danilov, “Resolvent estimates and the spectrum of the Dirac operator with periodical potential”, TMF, 103:1 (1995), 3–22; Theoret. and Math. Phys., 103:1 (1995), 349–365
Danilov L.I., “On Absolute Continuity of the Spectrum of a 3D Periodic Magnetic Dirac Operator”, Integral Equations Operator Theory, 71:4 (2011), 535–556
Shen, ZW, “Uniform Sobolev inequalities and absolute continuity of periodic operators”, Transactions of the American Mathematical Society, 360:4 (2008), 1741
L. I. Danilov, “Ob absolyutnoi nepreryvnosti spektra trekhmernogo periodicheskogo operatora Diraka”, Izv. IMI UdGU, 2006, no. 1(35), 49–76
L. I. Danilov, “The absence of eigenvalues in the spectrum of ageneralized two-dimensional periodic Dirac operator”, St. Petersburg Math. J., 17:3 (2006), 409–433
L. I. Danilov, “Ob otsutstvii sobstvennykh znachenii v spektre dvumernykh periodicheskikh operatorov Diraka i Shredingera”, Izv. IMI UdGU, 2004, no. 1(29), 49–84
L. I. Danilov, “Absolute Continuity of the Spectrum of a Periodic Schrödinger Operator”, Math. Notes, 73:1 (2003), 46–57
L. I. Danilov, “O spektre dvumernykh periodicheskikh operatorov Shredingera i Diraka”, Izv. IMI UdGU, 2002, no. 3(26), 3–98
Kuchment, P, “On the structure of spectra of periodic elliptic operators”, Transactions of the American Mathematical Society, 354:2 (2001), 537
L. I. Danilov, “Spectrum of the periodic Dirac operator”, Theoret. and Math. Phys., 124:1 (2000), 859–871
L. I. Danilov, “On the spectrum of the two-dimensional periodic Dirac operator”, Theoret. and Math. Phys., 118:1 (1999), 1–11