Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1995, Volume 103, Number 1, Pages 3–22 (Mi tmf1282)  

This article is cited in 13 scientific papers (total in 13 papers)

Resolvent estimates and the spectrum of the Dirac operator with periodical potential

L. I. Danilov

Physical-Technical Institute of the Ural Branch of the Russian Academy of Sciences
References:
Abstract: Some estimates of the norm of resolvent of Dirac operator on n-dimensional tores (n2) for complex values of quasimomentum are given. The absolutely continuity of the spectrum of periodical Dirac operator with potential VLβloc(R3), β>3, is proved.
Received: 10.03.1994
English version:
Theoretical and Mathematical Physics, 1995, Volume 103, Issue 1, Pages 349–365
DOI: https://doi.org/10.1007/BF02069779
Bibliographic databases:
Language: Russian
Citation: L. I. Danilov, “Resolvent estimates and the spectrum of the Dirac operator with periodical potential”, TMF, 103:1 (1995), 3–22; Theoret. and Math. Phys., 103:1 (1995), 349–365
Citation in format AMSBIB
\Bibitem{Dan95}
\by L.~I.~Danilov
\paper Resolvent estimates and the spectrum of the Dirac operator with periodical potential
\jour TMF
\yr 1995
\vol 103
\issue 1
\pages 3--22
\mathnet{http://mi.mathnet.ru/tmf1282}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1470934}
\zmath{https://zbmath.org/?q=an:0855.35105}
\transl
\jour Theoret. and Math. Phys.
\yr 1995
\vol 103
\issue 1
\pages 349--365
\crossref{https://doi.org/10.1007/BF02069779}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RZ96200001}
Linking options:
  • https://www.mathnet.ru/eng/tmf1282
  • https://www.mathnet.ru/eng/tmf/v103/i1/p3
  • This publication is cited in the following 13 articles:
    1. L. I. Danilov, “O spektre periodicheskogo magnitnogo operatora Diraka”, Izv. IMI UdGU, 2016, no. 2(48), 3–21  mathnet  elib
    2. Kuchment P., “An overview of periodic elliptic operators”, Bull. Amer. Math. Soc., 53:3 (2016), 343–414  crossref  mathscinet  zmath  isi  elib  scopus
    3. Danilov L.I., “On Absolute Continuity of the Spectrum of a 3D Periodic Magnetic Dirac Operator”, Integral Equations Operator Theory, 71:4 (2011), 535–556  crossref  isi
    4. Shen, ZW, “Uniform Sobolev inequalities and absolute continuity of periodic operators”, Transactions of the American Mathematical Society, 360:4 (2008), 1741  crossref  mathscinet  zmath  isi
    5. L. I. Danilov, “Absolyutnaya nepreryvnost spektra mnogomernogo periodicheskogo magnitnogo operatora Diraka”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2008, no. 1, 61–96  mathnet
    6. L. I. Danilov, “Ob absolyutnoi nepreryvnosti spektra trekhmernogo periodicheskogo operatora Diraka”, Izv. IMI UdGU, 2006, no. 1(35), 49–76  mathnet
    7. L. I. Danilov, “The absence of eigenvalues in the spectrum of ageneralized two-dimensional periodic Dirac operator”, St. Petersburg Math. J., 17:3 (2006), 409–433  mathnet  crossref  mathscinet  zmath
    8. L. I. Danilov, “Ob otsutstvii sobstvennykh znachenii v spektre dvumernykh periodicheskikh operatorov Diraka i Shredingera”, Izv. IMI UdGU, 2004, no. 1(29), 49–84  mathnet
    9. L. I. Danilov, “Absolute Continuity of the Spectrum of a Periodic Schrödinger Operator”, Math. Notes, 73:1 (2003), 46–57  mathnet  crossref  crossref  mathscinet  zmath  isi
    10. L. I. Danilov, “O spektre dvumernykh periodicheskikh operatorov Shredingera i Diraka”, Izv. IMI UdGU, 2002, no. 3(26), 3–98  mathnet
    11. Kuchment, P, “On the structure of spectra of periodic elliptic operators”, Transactions of the American Mathematical Society, 354:2 (2001), 537  crossref  mathscinet  isi
    12. L. I. Danilov, “Spectrum of the periodic Dirac operator”, Theoret. and Math. Phys., 124:1 (2000), 859–871  mathnet  crossref  crossref  mathscinet  zmath  isi
    13. L. I. Danilov, “On the spectrum of the two-dimensional periodic Dirac operator”, Theoret. and Math. Phys., 118:1 (1999), 1–11  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:449
    Full-text PDF :141
    References:84
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025