Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2004, Volume 141, Number 3, Pages 455–468
DOI: https://doi.org/10.4213/tmf128
(Mi tmf128)
 

This article is cited in 4 scientific papers (total in 4 papers)

Exact Anomalous Dimensions of Composite Operators in the Obukhov–Kraichnan Model

N. V. Antonov, P. B. Goldin

Saint-Petersburg State University
Full-text PDF (256 kB) Citations (4)
References:
Abstract: We consider two stochastic equations that describe the turbulent transfer of a passive scalar field $\theta(x)\equiv\theta(t,\mathbf x)$ and generalize the known Obukhov–Kraichnan model to the case of a possible compressibility and large-scale anisotropy. The pair correlation function of the field $\theta(x)$ is characterized by an infinite collection of anomalous indices, which have previously been found exactly using the zero-mode method. In the quantum field formulation, these indices are identified with the critical dimensions of an infinite family of tensor composite operators that are quadratic in the field $\theta(x)$, which allows obtaining exact values for the latter (the values not restricted to the $\varepsilon$-expansion) and then using them to find the corresponding renormalization constants. The identification of the correlation function indices with the composite-operator dimensions itself is supported by a direct calculation of the critical dimensions in the one-loop approximation.
Keywords: Obukhov–Kraichnan model, anomalous scaling, passive scalar.
Received: 30.01.2004
English version:
Theoretical and Mathematical Physics, 2004, Volume 141, Issue 3, Pages 1725–1736
DOI: https://doi.org/10.1023/B:TAMP.0000049764.37693.6d
Bibliographic databases:
Language: Russian
Citation: N. V. Antonov, P. B. Goldin, “Exact Anomalous Dimensions of Composite Operators in the Obukhov–Kraichnan Model”, TMF, 141:3 (2004), 455–468; Theoret. and Math. Phys., 141:3 (2004), 1725–1736
Citation in format AMSBIB
\Bibitem{AntGol04}
\by N.~V.~Antonov, P.~B.~Goldin
\paper Exact Anomalous Dimensions of Composite Operators in the Obukhov--Kraichnan Model
\jour TMF
\yr 2004
\vol 141
\issue 3
\pages 455--468
\mathnet{http://mi.mathnet.ru/tmf128}
\crossref{https://doi.org/10.4213/tmf128}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2141138}
\zmath{https://zbmath.org/?q=an:1178.76188}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004TMP...141.1725A}
\transl
\jour Theoret. and Math. Phys.
\yr 2004
\vol 141
\issue 3
\pages 1725--1736
\crossref{https://doi.org/10.1023/B:TAMP.0000049764.37693.6d}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000226332800008}
Linking options:
  • https://www.mathnet.ru/eng/tmf128
  • https://doi.org/10.4213/tmf128
  • https://www.mathnet.ru/eng/tmf/v141/i3/p455
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:464
    Full-text PDF :225
    References:82
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024