Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1995, Volume 102, Number 2, Pages 258–282 (Mi tmf1265)  

This article is cited in 5 scientific papers (total in 5 papers)

The point interactions in the problem of three quantum particles with internal structure

K. A. Makarova, V. V. Melezhika, A. K. Motovilovb

a Saint-Petersburg State University
b Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics
References:
Abstract: The problem of three quantum particles with internal structure is considered where the pair interactions are described in terms of two-channel Hamiltonians. It is proved that if parameters of the model are such that the total three-body Hamiltonian is semibounded, the Faddeev equations are of Fredholm type. The boundary value problems are formulated for the Faddeev differential equations which can be used for search of the scattering wave functions.
Received: 17.03.1994
English version:
Theoretical and Mathematical Physics, 1995, Volume 102, Issue 2, Pages 188–207
DOI: https://doi.org/10.1007/BF01040400
Bibliographic databases:
Language: Russian
Citation: K. A. Makarov, V. V. Melezhik, A. K. Motovilov, “The point interactions in the problem of three quantum particles with internal structure”, TMF, 102:2 (1995), 258–282; Theoret. and Math. Phys., 102:2 (1995), 188–207
Citation in format AMSBIB
\Bibitem{MakMelMot95}
\by K.~A.~Makarov, V.~V.~Melezhik, A.~K.~Motovilov
\paper The point interactions in the problem of three quantum particles with internal structure
\jour TMF
\yr 1995
\vol 102
\issue 2
\pages 258--282
\mathnet{http://mi.mathnet.ru/tmf1265}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1350273}
\zmath{https://zbmath.org/?q=an:0853.45002}
\transl
\jour Theoret. and Math. Phys.
\yr 1995
\vol 102
\issue 2
\pages 188--207
\crossref{https://doi.org/10.1007/BF01040400}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RQ88800009}
Linking options:
  • https://www.mathnet.ru/eng/tmf1265
  • https://www.mathnet.ru/eng/tmf/v102/i2/p258
  • This publication is cited in the following 5 articles:
    1. G. A. Melnikov, N. M. Ignatenko, V. V. Suchilkin, A. S. Gromkov, “Formation of Cluster Systems in Chaotic Condensed Media”, jour, 13:2 (2023), 164  crossref
    2. Michelangeli A., “Models of Zero-Range Interaction For the Bosonic Trimer At Unitarity”, Rev. Math. Phys., 33:04 (2021), 2150010  crossref  isi
    3. Michelangeli A., Ottolini A., “On Point Interactions Realised as Ter-Martirosyan-Skornyakov Hamiltonians”, Rep. Math. Phys., 79:2 (2017), 215–260  isi
    4. Vall, AN, “Two- and three-particle states in a nonrelativistic four-fermion model in the fine-tuning renormalization scheme: Goldstone mode versus extension theory”, Few-Body Systems, 30:3 (2001), 187  crossref  adsnasa  isi
    5. Kurasov P., Pavlov B., “Few-body Krein's formula”, Operator Theory and Related Topics, Operator Theory : Advances and Applications, 118, 2000, 225–254  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:381
    Full-text PDF :147
    References:67
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025