Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1995, Volume 102, Number 2, Pages 183–197 (Mi tmf1258)  

This article is cited in 2 scientific papers (total in 2 papers)

Commutative properties of singularly perturbate operators

N. E. Dudkin, V. D. Koshmanenko

Institute of Mathematics, Ukrainian National Academy of Sciences
References:
Abstract: Let a selfadjoint operator $A$ in Hilbert space $\mathcal H$ commutes with bounded operator $S$ and let $\widetilde A$ be singularly perturbate with respect to $A$, i.e. $\widetilde A$ coincides with $A$ on a dense domain in $\mathcal H$. The conditions under wich $\widetilde A$ commutes with $S$ are studied. The cases when $S$ is unbounded and when $S$ is replaced for singularly perturbate $\widetilde S$ are also investigated. As an example the Laplace operator in $L_2(\mathbf R^q)$ singularly perturbate by the set of $\delta$-functions and commuting with symmetrization in $\mathbf R^q$, $q=2,3$ or with regular representations of arbitrary isometric transformations in $\mathbf R^q$, $q\leqslant 3$ is considered.
Received: 18.01.1994
English version:
Theoretical and Mathematical Physics, 1995, Volume 102, Issue 2, Pages 133–143
DOI: https://doi.org/10.1007/BF01040393
Bibliographic databases:
Language: Russian
Citation: N. E. Dudkin, V. D. Koshmanenko, “Commutative properties of singularly perturbate operators”, TMF, 102:2 (1995), 183–197; Theoret. and Math. Phys., 102:2 (1995), 133–143
Citation in format AMSBIB
\Bibitem{DudKos95}
\by N.~E.~Dudkin, V.~D.~Koshmanenko
\paper Commutative properties of singularly perturbate operators
\jour TMF
\yr 1995
\vol 102
\issue 2
\pages 183--197
\mathnet{http://mi.mathnet.ru/tmf1258}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1350268}
\zmath{https://zbmath.org/?q=an:0858.47008}
\transl
\jour Theoret. and Math. Phys.
\yr 1995
\vol 102
\issue 2
\pages 133--143
\crossref{https://doi.org/10.1007/BF01040393}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RQ88800002}
Linking options:
  • https://www.mathnet.ru/eng/tmf1258
  • https://www.mathnet.ru/eng/tmf/v102/i2/p183
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:326
    Full-text PDF :149
    References:51
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024