Abstract:
The random energy model is considered. In the spin-glass phase magnetization disappears exponentially by volume. The magnetization corresponds to the probability of correct decoding, when the information transmission rate exceeds the channel capacity.
Citation:
A. E. Allakhverdyan, D. B. Saakyan, “Finite volume corrections to magnetization in the spin-glass phase of Derrida model”, TMF, 109:3 (1996), 422–426; Theoret. and Math. Phys., 109:3 (1996), 1574–1577
\Bibitem{AllSaa96}
\by A.~E.~Allakhverdyan, D.~B.~Saakyan
\paper Finite volume corrections to magnetization in the spin-glass phase of Derrida model
\jour TMF
\yr 1996
\vol 109
\issue 3
\pages 422--426
\mathnet{http://mi.mathnet.ru/tmf1238}
\crossref{https://doi.org/10.4213/tmf1238}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1472479}
\zmath{https://zbmath.org/?q=an:0938.82523}
\transl
\jour Theoret. and Math. Phys.
\yr 1996
\vol 109
\issue 3
\pages 1574--1577
\crossref{https://doi.org/10.1007/BF02073874}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996XN86800009}
Linking options:
https://www.mathnet.ru/eng/tmf1238
https://doi.org/10.4213/tmf1238
https://www.mathnet.ru/eng/tmf/v109/i3/p422
This publication is cited in the following 2 articles:
Merhav, N, “The random energy model in a magnetic field and joint source-channel coding”, Physica A-Statistical Mechanics and Its Applications, 387:22 (2008), 5662
Saakian, DB, “Error threshold in optimal coding, numerical criteria, and classes of universalities for complexity”, Physical Review E, 71:1 (2005), 016126