Abstract:
We consider quantum integrable Calogero–Moser problem and its generalizations connected with Coxeter groups. For special values of coupling constants this problem has additional integrals and it is algebraically integrable. We give an effective description of additional
integrals of this quantum problem.
Citation:
O. A. Chalykh, “Additional integrals of the generalized quantum Calogero–Moser problem”, TMF, 109:1 (1996), 28–33; Theoret. and Math. Phys., 109:1 (1996), 1269–1273
This publication is cited in the following 10 articles:
Francisco Correa, Olaf Lechtenfeld, “Algebraic integrability of PT -deformed Calogero models”, J. Phys.: Conf. Ser., 2038:1 (2021), 012007
Feigin M., Vrabec M., “Intertwining Operator For Ag(2) Calogero-Moser-Sutherland System”, J. Math. Phys., 60:7 (2019), 073503
Correa F., Lechtenfeld O., “the Tetrahexahedric Angular Calogero Model”, J. High Energy Phys., 2015, no. 10, 191
Misha Feigin, Tigran Hakobyan, “On Dunkl angular momenta algebra”, J. High Energ. Phys., 2015:11 (2015)
Francisco Correa, Olaf Lechtenfeld, Mikhail Plyushchay, “Nonlinear supersymmetry in the quantum Calogero model”, J. High Energ. Phys., 2014:4 (2014)
Chalykh, O, “Algebro-geometric Schrodinger operators in many dimensions”, Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 366:1867 (2008), 947
Taniguchi, K, “On the symmetry of commuting differential operators with sinpularities along hyperplanes”, International Mathematics Research Notices, 2004, no. 36, 1845
A. P. Veselov, Calogero—Moser— Sutherland Models, 2000, 507
Chalykh, OA, “Multidimensional integrable Schrodinger operators with matrix potential”, Journal of Mathematical Physics, 40:11 (1999), 5341
Chalykh, O, “New integrable generalizations of Calogero–Moser quantum problem”, Journal of Mathematical Physics, 39:2 (1998), 695