Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2004, Volume 141, Number 2, Pages 267–303
DOI: https://doi.org/10.4213/tmf120
(Mi tmf120)
 

This article is cited in 35 scientific papers (total in 35 papers)

Asymptotic Solutions of Nonrelativistic Equations of Quantum Mechanics in Curved Nanotubes: I. Reduction to Spatially One-Dimensional Equations

V. V. Belova, S. Yu. Dobrokhotovb, T. Ya. Tudorovskiib

a Moscow State Institute of Electronics and Mathematics (Technical University)
b A. Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences
References:
Abstract: We consider equations of nonrelativistic quantum mechanics in thin three-dimensional tubes (nanotubes). We suggest a version of the adiabatic approximation that permits reducing the original three-dimensional equations to one-dimensional equations for a wide range of energies of longitudinal motion. The suggested reduction method (the operator method for separating the variables) is based on the Maslov operator method. We classify the solutions of the reduced one-dimensional equation. In Part I of this paper, we deal with the reduction problem, consider the main ideas of the operator separation of variables (in the adiabatic approximation), and derive the reduced equations. In Part II, we will discuss various asymptotic solutions and several effects described by these solutions.
Keywords: nanotubes, adiabatic approximation, size quantization, spin-orbit interaction, semiclassical approximation.
Received: 22.09.2003
Revised: 28.04.2004
English version:
Theoretical and Mathematical Physics, 2004, Volume 141, Issue 2, Pages 1562–1592
DOI: https://doi.org/10.1023/B:TAMP.0000046563.43563.e6
Bibliographic databases:
Language: Russian
Citation: V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskii, “Asymptotic Solutions of Nonrelativistic Equations of Quantum Mechanics in Curved Nanotubes: I. Reduction to Spatially One-Dimensional Equations”, TMF, 141:2 (2004), 267–303; Theoret. and Math. Phys., 141:2 (2004), 1562–1592
Citation in format AMSBIB
\Bibitem{BelDobTud04}
\by V.~V.~Belov, S.~Yu.~Dobrokhotov, T.~Ya.~Tudorovskii
\paper Asymptotic Solutions of Nonrelativistic Equations of Quantum Mechanics in Curved Nanotubes: I.~Reduction to~Spatially One-Dimensional Equations
\jour TMF
\yr 2004
\vol 141
\issue 2
\pages 267--303
\mathnet{http://mi.mathnet.ru/tmf120}
\crossref{https://doi.org/10.4213/tmf120}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2120227}
\zmath{https://zbmath.org/?q=an:1178.81080}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004TMP...141.1562B}
\elib{https://elibrary.ru/item.asp?id=13448200}
\transl
\jour Theoret. and Math. Phys.
\yr 2004
\vol 141
\issue 2
\pages 1562--1592
\crossref{https://doi.org/10.1023/B:TAMP.0000046563.43563.e6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000225778500007}
Linking options:
  • https://www.mathnet.ru/eng/tmf120
  • https://doi.org/10.4213/tmf120
  • https://www.mathnet.ru/eng/tmf/v141/i2/p267
  • This publication is cited in the following 35 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:876
    Full-text PDF :348
    References:88
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024