Abstract:
We consider conservation laws of the first order quadratic in derivatives related to systems of equations of hydrodynamic type. We derive the defining relations for their densities in a form invariant with respect to the pointwise change of variables. Examples of nondiagonalizable systems admitting quadratic conservation laws are given.
Citation:
E. V. Ferapontov, R. A. Sharipov, “On first-order conservation laws for systems of hydronamic type equations”, TMF, 108:1 (1996), 109–128; Theoret. and Math. Phys., 108:1 (1996), 937–952
\Bibitem{FerSha96}
\by E.~V.~Ferapontov, R.~A.~Sharipov
\paper On first-order conservation laws for systems of hydronamic type equations
\jour TMF
\yr 1996
\vol 108
\issue 1
\pages 109--128
\mathnet{http://mi.mathnet.ru/tmf1181}
\crossref{https://doi.org/10.4213/tmf1181}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1422423}
\zmath{https://zbmath.org/?q=an:0934.35090}
\transl
\jour Theoret. and Math. Phys.
\yr 1996
\vol 108
\issue 1
\pages 937--952
\crossref{https://doi.org/10.1007/BF02070520}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996WZ85900009}
Linking options:
https://www.mathnet.ru/eng/tmf1181
https://doi.org/10.4213/tmf1181
https://www.mathnet.ru/eng/tmf/v108/i1/p109
This publication is cited in the following 4 articles:
Opanasenko S., Bihlo A., Popovych R.O., Sergyeyev A., “Extended Symmetry Analysis of An Isothermal No-Slip Drift Flux Model”, Physica D, 402 (2020), 132188
Pavlov M.V., Vitolo R.F., “Remarks on the Lagrangian representation of bi-Hamiltonian equations”, J. Geom. Phys., 113 (2017), 239–249
Pavlov M.V. Vitolo R.F., “on the Bi-Hamiltonian Geometry of Wdvv Equations”, Lett. Math. Phys., 105:8 (2015), 1135–1163
A. V. Gladkov, V. V. Dmitrieva, R. A. Sharipov, “Some nonlinear equations reducible to diffusion-type equations”, Theoret. and Math. Phys., 123:1 (2000), 436–445