Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1996, Volume 108, Number 1, Pages 50–68
DOI: https://doi.org/10.4213/tmf1176
(Mi tmf1176)
 

This article is cited in 5 scientific papers (total in 5 papers)

Nonlocal hydrodynamics in the quantum field model φ4

O. Yu. Dinariev

Schmidt United Institute of Physics of the Earth, Russian Academy of Scienses
Full-text PDF (274 kB) Citations (5)
References:
Abstract: A procedure of passing from the quantum statistic mechanics to hydrodynamics previously found by the author is applied to the quantum field model φ4. In a certain class of external forces the equations of the quantum many-body system are shown to be equivalent to the equations of the nonlocal hydrodynamics. Hydrodynamic nonlocalities arising in the constituent relations are expressed via Green's functions for currents. By using the general symmetry properties a number of properties for the nonlocality kernels is deduced. In particular, conditions related to dissipativity and to T-invariance of the φ4 model (an analogue of Onsager's relations) are established. The connection of the classical transport coefficients with the nonlocality kernels is found. An algorithm for calculating the constituent relations by the perturbation theory on a base of the technique of temperature Green's functions is described.
Received: 22.06.1995
English version:
Theoretical and Mathematical Physics, 1996, Volume 108, Issue 1, Pages 889–903
DOI: https://doi.org/10.1007/BF02070515
Bibliographic databases:
Language: Russian
Citation: O. Yu. Dinariev, “Nonlocal hydrodynamics in the quantum field model φ4”, TMF, 108:1 (1996), 50–68; Theoret. and Math. Phys., 108:1 (1996), 889–903
Citation in format AMSBIB
\Bibitem{Din96}
\by O.~Yu.~Dinariev
\paper Nonlocal hydrodynamics in the quantum field model~$\varphi^4$
\jour TMF
\yr 1996
\vol 108
\issue 1
\pages 50--68
\mathnet{http://mi.mathnet.ru/tmf1176}
\crossref{https://doi.org/10.4213/tmf1176}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1422420}
\zmath{https://zbmath.org/?q=an:0960.82518}
\transl
\jour Theoret. and Math. Phys.
\yr 1996
\vol 108
\issue 1
\pages 889--903
\crossref{https://doi.org/10.1007/BF02070515}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996WZ85900004}
Linking options:
  • https://www.mathnet.ru/eng/tmf1176
  • https://doi.org/10.4213/tmf1176
  • https://www.mathnet.ru/eng/tmf/v108/i1/p50
  • This publication is cited in the following 5 articles:
    1. O. Yu. Dinariev, “Dynamic theory of thermal fluctuations with allowance for the spatiotemporal nonlocality”, Russ Phys J, 43:4 (2000), 279  crossref
    2. Dinariyev, OY, “Fundamental statements of the phenomenological approach in non-local hydrodynamics”, Pmm Journal of Applied Mathematics and Mechanics, 63:4 (1999), 569  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    3. O. Yu. Dinariev, “Nonnegative entropy production in the hydrodynamics of a multiparticle quantum system”, Russ Phys J, 41:5 (1998), 451  crossref
    4. O. Yu. Dinariev, “Equivalence between classical statistical mechanics and nonlocal hydrodynamics for a certain class of external forces”, Russ Phys J, 41:3 (1998), 211  crossref
    5. O. Yu. Dinariev, “Nonlocal hydrodynamics of a many-particle quantum system at zero temperature”, Russ Phys J, 40:8 (1997), 741  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:489
    Full-text PDF :241
    References:75
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025