Abstract:
It is shown that macroscopic physical phenomena in the multiparticle systems with long-range interaction are determined by the hierarchy of macroscopic fields with sources of the special tensor rank. The method of deriving the continual equations in the (r,t) space is suggested.
Equations describing the dynamics of dipole momentum and dipole macroscopic fields are obtained. It is shown that in some cases more detail consideration of interaction leads to the essential physical consequences. The equation of energy balance for the infinitesimal
volume as an open system is obtained. It is shown that heat flow is not a flow of kinetic energy of particles but the flow of full energy of the infinitesimal volume.
Citation:
M. A. Drofa, L. S. Kuz'menkov, “Continual approach to the multiparticle systems with long-range interaction. Hierarchy of macroscopic fields and some physical consequences”, TMF, 108:1 (1996), 3–15; Theoret. and Math. Phys., 108:1 (1996), 849–859
\Bibitem{DroKuz96}
\by M.~A.~Drofa, L.~S.~Kuz'menkov
\paper Continual approach to the multiparticle systems with long-range interaction. Hierarchy of macroscopic fields and some physical consequences
\jour TMF
\yr 1996
\vol 108
\issue 1
\pages 3--15
\mathnet{http://mi.mathnet.ru/tmf1173}
\crossref{https://doi.org/10.4213/tmf1173}
\zmath{https://zbmath.org/?q=an:0960.82526}
\transl
\jour Theoret. and Math. Phys.
\yr 1996
\vol 108
\issue 1
\pages 849--859
\crossref{https://doi.org/10.1007/BF02070512}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996WZ85900001}
Linking options:
https://www.mathnet.ru/eng/tmf1173
https://doi.org/10.4213/tmf1173
https://www.mathnet.ru/eng/tmf/v108/i1/p3
This publication is cited in the following 20 articles:
Pavel A. Andreev, “Hydrodynamic and kinetic representation of the microscopic classic dynamics at the transition on the macroscopic scale”, J. Plasma Phys., 90:1 (2024)
Pavel A. Andreev, “Extended relativistic kinetic model composed of the scalar and two vector distribution functions: Application to the spin-electron-acoustic waves”, Physics of Plasmas, 31:4 (2024)
Pavel A. Andreev, Mariya Iv. Trukhanova, “Polarization evolution equation for exchange-strictionally formed type II multiferroic materials”, Eur. Phys. J. B, 97:8 (2024)
P. A. Andreev, M. I. Trukhanova, “Quantum Hydrodynamic Representation of the Exchange Interaction in the Theory of Description of Magnetically Ordered Media”, Moscow Univ. Phys., 78:4 (2023), 445
P.A. Andreev, M.I. Trukhanova, “Quantum hydrodynamic representation of the exchange interaction in the theory of description of magnetically ordered media”, VMU, 2023, no. №4_2023, 2340103–1
Pavel A. Andreev, “Microscopic model for relativistic hydrodynamics of ideal plasmas”, Eur. Phys. J. D, 77:7 (2023)
Pavel A. Andreev, “Waves propagating parallel to the magnetic field in relativistically hot plasmas: A hydrodynamic model with the average reverse gamma factor evolution”, Contributions to Plasma Physics, 63:7 (2023)
Pavel A. Andreev, “Spin-electron-acoustic waves and solitons in high-density degenerate relativistic plasmas”, Physics of Plasmas, 29:12 (2022)
Pavel A. Andreev, “Relativistic hydrodynamic model with the average reverse gamma factor evolution for the degenerate plasmas: High-density ion-acoustic solitons”, Physics of Plasmas, 29:6 (2022)
Pavel A Andreev, “On the structure of relativistic hydrodynamics for hot plasmas”, Phys. Scr., 97:8 (2022), 085602
Andreev P.A., Kuz'menkov L.S., “On the Equation of State For the “Thermal” Part of the Spin Current: the Pauli Principle Contribution in the Spin Wave Spectrum in a Cold Fermion System”, Prog. Theor. Exp. Phys., 2019, no. 5, 053J01
V V Zubkov, “Distribution functions for continuous medium without probability hypotheses”, J. Phys.: Conf. Ser., 1352:1 (2019), 012067
Andreev P.A., “NLSE for quantum plasmas with the radiation damping”, Mod. Phys. Lett. B, 30:13 (2016), 1650180
Ivanov A.Yu., Andreev P.A., Kuz'menkov L.S., “Balance Equations in Semi-Relativistic Quantum Hydrodynamics”, Int. J. Mod. Phys. B, 28:21 (2014), 1450132
Trukhanova M.I., “Spin and Polarization Waves in a System of Paramagnetic Particles With An Intrinsic Dipole Moment”, Internat J Modern Phys B, 26:1 (2012)
Kuzmenkov L.S., Andreev P.A., “Microscopic Classic Hydrodynamic and Methods of Averaging”, Piers 2012 Moscow: Progress in Electromagnetics Research Symposium, Progress in Electromagnetics Research Symposium, Electromagnetics Acad, 2012, 158–162
Andreev P.A., Kuzmenkov L.S., Trukhanova M.I., “Quantum hydrodynamics approach to the formation of waves in polarized two-dimensional systems of charged and neutral particles”, Physical Review B, 84:24 (2011), 245401
Trukhanova M.I., “Spinovye i polyarizatsionnye volny v sisteme neitralnykh paramagnitnykh chastits s sobstvennym dipolnym momentom”, Naukoemkie tekhnologii, 12:2 (2011), 10–24
Spin and polarization waves in a system of paramagnetic particles with an intrinsic dipole moment
L. S. Kuz'menkov, S. G. Maksimov, “Quantum hydrodynamics of particle systems with Coulomb interaction and quantum Bohm potential”, Theoret. and Math. Phys., 118:2 (1999), 227–240
I. M. Aleshin, “Magnetohydrodynamics with regard to electron inertia: Some exact solutions”, Theoret. and Math. Phys., 116:3 (1998), 1011–1020