Abstract:
Ordinary differential equations with polynomial coefficients originate different kinds of integral relations for its solutions: integral representations in terms of simpler functions, integral equations etc. In this paper, a new kind of integral relations for functions of the Heun class are presented. These relations are coupling in ivolution eigensolutions, which are characterized by different behaviour at singularities and often also by different intervals of consideration and
equations themselves. The studied relations are arranged in two staircases where each succeeding equation may be obtained with the help of the confluence process.
Citation:
A. Ya. Kazakov, S. Yu. Slavyanov, “Integral relations for special functions of hypergeometric and Heun class”, TMF, 107:3 (1996), 388–396; Theoret. and Math. Phys., 107:3 (1996), 733–739
\Bibitem{KazSla96}
\by A.~Ya.~Kazakov, S.~Yu.~Slavyanov
\paper Integral relations for special functions of hypergeometric and Heun class
\jour TMF
\yr 1996
\vol 107
\issue 3
\pages 388--396
\mathnet{http://mi.mathnet.ru/tmf1164}
\crossref{https://doi.org/10.4213/tmf1164}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1407468}
\zmath{https://zbmath.org/?q=an:0924.34021}
\transl
\jour Theoret. and Math. Phys.
\yr 1996
\vol 107
\issue 3
\pages 733--739
\crossref{https://doi.org/10.1007/BF02070381}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996WY91300004}
Linking options:
https://www.mathnet.ru/eng/tmf1164
https://doi.org/10.4213/tmf1164
https://www.mathnet.ru/eng/tmf/v107/i3/p388
This publication is cited in the following 21 articles:
Kouichi Takemura, “Kernel Function, $q$-Integral Transformation and $q$-Heun Equations”, SIGMA, 20 (2024), 083, 22 pp.
A. Ya. Kazakov, “Euler Integral Symmetries and the Asymptotics of the Monodromy for the Heun Equation”, J Math Sci, 277:4 (2023), 598
Kouichi Takemura, 2021 Days on Diffraction (DD), 2021, 152
A. Ya. Kazakov, “Integralnaya simmetriya Eilera i asimptotika monodromii dlya uravnenii Goina”, Matematicheskie voprosy teorii rasprostraneniya voln. 50, Posvyaschaetsya devyanostoletiyu Vasiliya Mikhailovicha BABIChA, Zap. nauchn. sem. POMI, 493, POMI, SPb., 2020, 186–199
da Costa R.T., “Mode Stability For the Teukolsky Equation on Extremal and Subextremal Kerr Spacetimes”, Commun. Math. Phys., 378:1 (2020), 705–781
Farrokh Atai, Edwin Langmann, “Series Solutions of the Non-Stationary Heun Equation”, SIGMA, 14 (2018), 011, 32 pp.
Takemura K., “Integral Transformation of Heun'S Equation and Some Applications”, J. Math. Soc. Jpn., 69:2 (2017), 849–891
El-Jaick L.J., Figueiredo B.D.B., “Integral Relations For Solutions of the Confluent Heun Equation”, Appl. Math. Comput., 256 (2015), 885–904
A. Ya. Kazakov, “Integral symmetry for the confluent Heun equation with added apparent singularity”, J. Math. Sci. (N. Y.), 214:3 (2016), 268–276
Cordero R., Turrubiates F.J., Vera J.C., “On a Phase Space Quantum Description of the Spherical 2-Brane”, Phys. Scr., 89:7 (2014), 075001
Takemura K., “Heun's equation, generalized hypergeometric function and exceptional Jacobi polynomial”, J. Phys. A: Math. Theor., 45:8 (2012), 085211
Takemura K., “Integral Transformation of Heun's Equation and Apparent Singularity”, Painleve Equations and Related Topics (2012), Degruyter Proceedings in Mathematics, eds. Bruno A., Batkhin A., Walter de Gruyter & Co, 2012, 257–261
El-Jaick L.J., Figueiredo B.D.B., “Transformations of Heun's equation and its integral relations”, J. Phys. A: Math. Theor., 44:7 (2011), 075204
Takemura K., “Integral transformation and Darboux transformation of Heun's differential equation”, Nonlinear and Modern Mathematical Physics, AIP Conference Proceedings, 1212, 2010, 58–65
Kouichi Takemura, “Middle Convolution and Heun's Equation”, SIGMA, 5 (2009), 040, 22 pp.
Simon N. M. Ruijsenaars, “Hilbert–Schmidt Operators vs. Integrable Systems of Elliptic Calogero–Moser Type. III. The Heun Case”, SIGMA, 5 (2009), 049, 21 pp.
D. P. Novikov, “Integral transformation of solutions for a Fuchsian-class equation corresponding to the Okamoto transformation of the Painlevé VI equation”, Theoret. and Math. Phys., 146:3 (2006), 295–303
Tarasov, VF, “The Heun-Schrodinger radial equation with two auxiliary parameters for H-like atoms”, Modern Physics Letters B, 16:25 (2002), 937
Ochiai, H, “Non-commutative harmonic oscillators and Fuchsian ordinary differential operators”, Communications in Mathematical Physics, 217:2 (2001), 357
A. Ya. Kazakov, “Integral symmetries, integral invariants, and monodromy matrices for ordinary differential equations”, Theoret. and Math. Phys., 116:3 (1998), 991–1000