Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1996, Volume 107, Number 3, Pages 388–396
DOI: https://doi.org/10.4213/tmf1164
(Mi tmf1164)
 

This article is cited in 21 scientific papers (total in 21 papers)

Integral relations for special functions of hypergeometric and Heun class

A. Ya. Kazakov, S. Yu. Slavyanov

Saint-Petersburg State University
References:
Abstract: Ordinary differential equations with polynomial coefficients originate different kinds of integral relations for its solutions: integral representations in terms of simpler functions, integral equations etc. In this paper, a new kind of integral relations for functions of the Heun class are presented. These relations are coupling in ivolution eigensolutions, which are characterized by different behaviour at singularities and often also by different intervals of consideration and equations themselves. The studied relations are arranged in two staircases where each succeeding equation may be obtained with the help of the confluence process.
Received: 19.06.1995
English version:
Theoretical and Mathematical Physics, 1996, Volume 107, Issue 3, Pages 733–739
DOI: https://doi.org/10.1007/BF02070381
Bibliographic databases:
Language: Russian
Citation: A. Ya. Kazakov, S. Yu. Slavyanov, “Integral relations for special functions of hypergeometric and Heun class”, TMF, 107:3 (1996), 388–396; Theoret. and Math. Phys., 107:3 (1996), 733–739
Citation in format AMSBIB
\Bibitem{KazSla96}
\by A.~Ya.~Kazakov, S.~Yu.~Slavyanov
\paper Integral relations for special functions of hypergeometric and Heun class
\jour TMF
\yr 1996
\vol 107
\issue 3
\pages 388--396
\mathnet{http://mi.mathnet.ru/tmf1164}
\crossref{https://doi.org/10.4213/tmf1164}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1407468}
\zmath{https://zbmath.org/?q=an:0924.34021}
\transl
\jour Theoret. and Math. Phys.
\yr 1996
\vol 107
\issue 3
\pages 733--739
\crossref{https://doi.org/10.1007/BF02070381}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996WY91300004}
Linking options:
  • https://www.mathnet.ru/eng/tmf1164
  • https://doi.org/10.4213/tmf1164
  • https://www.mathnet.ru/eng/tmf/v107/i3/p388
  • This publication is cited in the following 21 articles:
    1. Kouichi Takemura, “Kernel Function, $q$-Integral Transformation and $q$-Heun Equations”, SIGMA, 20 (2024), 083, 22 pp.  mathnet  crossref
    2. A. Ya. Kazakov, “Euler Integral Symmetries and the Asymptotics of the Monodromy for the Heun Equation”, J Math Sci, 277:4 (2023), 598  crossref
    3. Kouichi Takemura, 2021 Days on Diffraction (DD), 2021, 152  crossref
    4. A. Ya. Kazakov, “Integralnaya simmetriya Eilera i asimptotika monodromii dlya uravnenii Goina”, Matematicheskie voprosy teorii rasprostraneniya voln. 50, Posvyaschaetsya devyanostoletiyu Vasiliya Mikhailovicha BABIChA, Zap. nauchn. sem. POMI, 493, POMI, SPb., 2020, 186–199  mathnet
    5. da Costa R.T., “Mode Stability For the Teukolsky Equation on Extremal and Subextremal Kerr Spacetimes”, Commun. Math. Phys., 378:1 (2020), 705–781  crossref  isi
    6. Farrokh Atai, Edwin Langmann, “Series Solutions of the Non-Stationary Heun Equation”, SIGMA, 14 (2018), 011, 32 pp.  mathnet  crossref
    7. Takemura K., “Integral Transformation of Heun'S Equation and Some Applications”, J. Math. Soc. Jpn., 69:2 (2017), 849–891  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    8. El-Jaick L.J., Figueiredo B.D.B., “Integral Relations For Solutions of the Confluent Heun Equation”, Appl. Math. Comput., 256 (2015), 885–904  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    9. A. Ya. Kazakov, “Integral symmetry for the confluent Heun equation with added apparent singularity”, J. Math. Sci. (N. Y.), 214:3 (2016), 268–276  mathnet  crossref  mathscinet
    10. Cordero R., Turrubiates F.J., Vera J.C., “On a Phase Space Quantum Description of the Spherical 2-Brane”, Phys. Scr., 89:7 (2014), 075001  crossref  adsnasa  isi  scopus  scopus  scopus
    11. Takemura K., “Heun's equation, generalized hypergeometric function and exceptional Jacobi polynomial”, J. Phys. A: Math. Theor., 45:8 (2012), 085211  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    12. Takemura K., “Integral Transformation of Heun's Equation and Apparent Singularity”, Painleve Equations and Related Topics (2012), Degruyter Proceedings in Mathematics, eds. Bruno A., Batkhin A., Walter de Gruyter & Co, 2012, 257–261  mathscinet  isi
    13. El-Jaick L.J., Figueiredo B.D.B., “Transformations of Heun's equation and its integral relations”, J. Phys. A: Math. Theor., 44:7 (2011), 075204  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    14. Takemura K., “Integral transformation and Darboux transformation of Heun's differential equation”, Nonlinear and Modern Mathematical Physics, AIP Conference Proceedings, 1212, 2010, 58–65  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    15. Kouichi Takemura, “Middle Convolution and Heun's Equation”, SIGMA, 5 (2009), 040, 22 pp.  mathnet  crossref  mathscinet  zmath
    16. Simon N. M. Ruijsenaars, “Hilbert–Schmidt Operators vs. Integrable Systems of Elliptic Calogero–Moser Type. III. The Heun Case”, SIGMA, 5 (2009), 049, 21 pp.  mathnet  crossref  mathscinet  zmath
    17. D. P. Novikov, “Integral transformation of solutions for a Fuchsian-class equation corresponding to the Okamoto transformation of the Painlevé VI equation”, Theoret. and Math. Phys., 146:3 (2006), 295–303  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    18. Tarasov, VF, “The Heun-Schrodinger radial equation with two auxiliary parameters for H-like atoms”, Modern Physics Letters B, 16:25 (2002), 937  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    19. Ochiai, H, “Non-commutative harmonic oscillators and Fuchsian ordinary differential operators”, Communications in Mathematical Physics, 217:2 (2001), 357  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    20. A. Ya. Kazakov, “Integral symmetries, integral invariants, and monodromy matrices for ordinary differential equations”, Theoret. and Math. Phys., 116:3 (1998), 991–1000  mathnet  mathnet  crossref  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:641
    Full-text PDF :293
    References:63
    First page:3
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025