Abstract:
Four various ansatz of the Krichever curves for the elliptic in $t$ solutions of the nonlinear Schrödinger equation are considered. An example is given.
Citation:
A. O. Smirnov, “Elliptic in $t$ solutions of the nonlinear Schrödinger equation”, TMF, 107:2 (1996), 188–200; Theoret. and Math. Phys., 107:2 (1996), 568–578
This publication is cited in the following 13 articles:
U. B. Muminov, A. B. Khasanov, “Integration of a defocusing nonlinear Schrödinger equation with additional terms”, Theoret. and Math. Phys., 211:1 (2022), 514–531
U. B. Muminov, A. B. Khasanov, “Zadacha Koshi dlya defokusiruyuschego nelineinogo uravneniya Shredingera s nagruzhennym chlenom”, Matem. tr., 25:1 (2022), 102–133
U. B. Muminov, A. B. Khasanov, “The Cauchy Problem for the Defocusing Nonlinear Schrödinger Equation with a Loaded Term”, Sib. Adv. Math., 32:4 (2022), 277
V. B. Matveev, A. O. Smirnov, “Elliptic solitons and «freak waves»”, St. Petersburg Math. J., 33:3 (2022), 523–551
A. B. Yakhshimuratov, “Integration of a higher-order nonlinear Schrödinger system with a self-consistent source in the class of periodic functions”, Theoret. and Math. Phys., 202:2 (2020), 137–149
Matveev V.B. Smirnov A.O., “Akns and Nls Hierarchies, Mrw Solutions, P-N Breathers, and Beyond”, J. Math. Phys., 59:9, SI (2018), 091419
V. B. Matveev, A. O. Smirnov, “Two-phase periodic solutions to the AKNS hierarchy equations”, J. Math. Sci. (N. Y.), 242:5 (2019), 722–741
V. B. Matveev, A. O. Smirnov, “Solutions of the Ablowitz–Kaup–Newell–Segur hierarchy equations of the “rogue wave” type: A unified approach”, Theoret. and Math. Phys., 186:2 (2016), 156–182
A. O. Smirnov, “Elliptic breather for nonlinear Shrödinger equation”, J. Math. Sci. (N. Y.), 192:1 (2013), 117–125
A. O. Smirnov, “Solution of a nonlinear Schrödinger equation in the form of two-phase
freak waves”, Theoret. and Math. Phys., 173:1 (2012), 1403–1416
Yakhshimuratov A., “The Nonlinear Schrodinger Equation with a Self-consistent Source in the Class of Periodic Functions”, Math Phys Anal Geom, 14:2 (2011), 153–169
Gesztesy, F, “Elliptic algebro-geometric solutions of the KdV and AKNS hierarchies - An analytic approach”, Bulletin of the American Mathematical Society, 35:4 (1998), 271
A. O. Smirnov, “On a class of elliptic potentials of the Dirac operator”, Sb. Math., 188:1 (1997), 115–135