Abstract:
AЁmethod of quantum description of motion in a dissipative system is considered.
One-dimensional problem is described by a nonlinear integro-differential generalization of the Schrödinger equation. The case of free motion with friction is solved exactly. The problem with the infinite-wall potential is considered and an approximate solution is obtained. The solution provides an example of a system with friction with time dependent parameters, expired from the moment of its production. This effect can be tentatively applied for an interpretation of experimental indications on a time dependence of hadron effective
cross-sections.
\Bibitem{Arb96}
\by B.~A.~Arbuzov
\paper On quantum description of motion with friction
\jour TMF
\yr 1996
\vol 106
\issue 2
\pages 300--305
\mathnet{http://mi.mathnet.ru/tmf1115}
\crossref{https://doi.org/10.4213/tmf1115}
\zmath{https://zbmath.org/?q=an:0887.45012}
\transl
\jour Theoret. and Math. Phys.
\yr 1996
\vol 106
\issue 2
\pages 249--253
\crossref{https://doi.org/10.1007/BF02071079}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VN51500010}
Linking options:
https://www.mathnet.ru/eng/tmf1115
https://doi.org/10.4213/tmf1115
https://www.mathnet.ru/eng/tmf/v106/i2/p300
This publication is cited in the following 9 articles:
S V Sazonov, “Axiomatic quasi-classical quantization of particle motion in the dissipative media”, Laser Phys. Lett., 21:6 (2024), 065205
S V Sazonov, “Quasi-classical motion of a particle in a bulk dissipative medium”, Laser Phys. Lett., 21:1 (2024), 015202
S V Sazonov, “Non-stationary quasi-classical states of a charged particle in a strong magnetic field under conditions of the dissipative medium”, Laser Phys. Lett., 21:3 (2024), 035201
S V Sazonov, “Quasi-classical dynamics of a charged particle under conditions of ionization losses in a weak magnetic field”, Laser Phys. Lett., 21:4 (2024), 045203
S V Sazonov, “Quasi-classical theory of cyclotron resonance with accounting for dissipation”, Laser Phys. Lett., 21:5 (2024), 055203
S. V. Sazonov, “SAMOSOGLASOVANNYY KVAZIKLASSIChESKIY PODKhOD K OPISANIYu DVIZhENIYa ChASTITsY V DISSIPATIVNOY SREDE”, Žurnal èksperimentalʹnoj i teoretičeskoj fiziki, 166:2(8) (2024)
S. V. Sazonov, “Quasiclassical quantization of the motion of a particle in the presence of a drag force proportional to the square of the velocity”, JETP Letters, 118:4 (2023), 302–308
Vasily E. Tarasov, Monograph Series on Nonlinear Science and Complexity, 7, Quantum Mechanics of Non-Hamiltonian and Dissipative Systems, 2008, 521
Rosenfelder, R, “Structure function of a damped harmonic oscillator”, Physical Review C, 68:3 (2003), 034602