Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1996, Volume 106, Number 1, Pages 44–61
DOI: https://doi.org/10.4213/tmf1096
(Mi tmf1096)
 

This article is cited in 8 scientific papers (total in 8 papers)

Quasiclassical asymptotics of the inverse scattering solutions of the KdV equation and the solution of Whitham's modulation equations

N. G. Mazur

Schmidt United Institute of Physics of the Earth, Russian Academy of Scienses
Full-text PDF (316 kB) Citations (8)
References:
Abstract: The initial value problem for the KdV equation is studied in the limit of weak dispertion. It may be considered as a model for nondissipative shock wave in plasmas. The perturbation theory in power series of the weak dispersion parameter leads to the Riemann simple wave equation describing nonlinear effects of wave front sharpening and “overturning”. The subsequent phase of the nondissipative shock wave evolution is described by Whitham's modulation equations.
Another approach used in this paper is based on the asymptotic study of the exact solution by the inverse scattering problem technique. The WKB formulas for the direct scattering problem solution and the exact multisolution of the inverse problem are considered. As a result a system of closed relations between $x$$t$ and the modulation parameters is obtained, which presents an exact solution of the Whitham's equations.
Received: 17.03.1995
English version:
Theoretical and Mathematical Physics, 1996, Volume 106, Issue 1, Pages 35–49
DOI: https://doi.org/10.1007/BF02070761
Bibliographic databases:
Language: Russian
Citation: N. G. Mazur, “Quasiclassical asymptotics of the inverse scattering solutions of the KdV equation and the solution of Whitham's modulation equations”, TMF, 106:1 (1996), 44–61; Theoret. and Math. Phys., 106:1 (1996), 35–49
Citation in format AMSBIB
\Bibitem{Maz96}
\by N.~G.~Mazur
\paper Quasiclassical asymptotics of the inverse scattering solutions of the KdV equation
and the solution of Whitham's modulation equations
\jour TMF
\yr 1996
\vol 106
\issue 1
\pages 44--61
\mathnet{http://mi.mathnet.ru/tmf1096}
\crossref{https://doi.org/10.4213/tmf1096}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1386381}
\zmath{https://zbmath.org/?q=an:0888.35098}
\transl
\jour Theoret. and Math. Phys.
\yr 1996
\vol 106
\issue 1
\pages 35--49
\crossref{https://doi.org/10.1007/BF02070761}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VF94600004}
Linking options:
  • https://www.mathnet.ru/eng/tmf1096
  • https://doi.org/10.4213/tmf1096
  • https://www.mathnet.ru/eng/tmf/v106/i1/p44
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024