Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1997, Volume 113, Number 3, Pages 397–412
DOI: https://doi.org/10.4213/tmf1088
(Mi tmf1088)
 

This article is cited in 9 scientific papers (total in 9 papers)

Spectral problem for the radial Schrödinger equation with power confining potentials

A. S. Vshivtseva, V. O. Galkinb, A. V. Tatarintseva, R. N. Faustovb

a Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University)
b Science Counsil RAS on Complex Problem 'Cybernetics' RAS
Full-text PDF (454 kB) Citations (9)
References:
Abstract: An approach reducing the solution of the Schrödinger equation for some widely used power potentials to the solution of the eigenvalue problem for an infinite system of algebraic equations is proposed. The developed algorithm is appropriate both for analytic calculations and for numerical computations. On the basis of this method, the charmonium and bottomonium mass spectra are calculated for the Cornell potential and for the sum of the Coulomb and oscillator potentials. The proposed approach allows one to determine the mass spectrum of the relativistic Schrödinger-like equations. Good agreement with experimental data is achieved.
Received: 07.05.1997
English version:
Theoretical and Mathematical Physics, 1997, Volume 113, Issue 3, Pages 1530–1542
DOI: https://doi.org/10.1007/BF02634513
Bibliographic databases:
Language: Russian
Citation: A. S. Vshivtsev, V. O. Galkin, A. V. Tatarintsev, R. N. Faustov, “Spectral problem for the radial Schrödinger equation with power confining potentials”, TMF, 113:3 (1997), 397–412; Theoret. and Math. Phys., 113:3 (1997), 1530–1542
Citation in format AMSBIB
\Bibitem{VshGalTat97}
\by A.~S.~Vshivtsev, V.~O.~Galkin, A.~V.~Tatarintsev, R.~N.~Faustov
\paper Spectral problem for the radial Schr\''odinger equation with power confining potentials
\jour TMF
\yr 1997
\vol 113
\issue 3
\pages 397--412
\mathnet{http://mi.mathnet.ru/tmf1088}
\crossref{https://doi.org/10.4213/tmf1088}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1615585}
\zmath{https://zbmath.org/?q=an:0963.34518}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 113
\issue 3
\pages 1530--1542
\crossref{https://doi.org/10.1007/BF02634513}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000072911400004}
Linking options:
  • https://www.mathnet.ru/eng/tmf1088
  • https://doi.org/10.4213/tmf1088
  • https://www.mathnet.ru/eng/tmf/v113/i3/p397
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:500
    Full-text PDF :281
    References:69
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024