Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2024, Volume 221, Number 2, Pages 385–396
DOI: https://doi.org/10.4213/tmf10749
(Mi tmf10749)
 

Cauchy matrix approach to novel extended semidiscrete KP-type systems

Hong-juan Tianabc, A. Silemd

a College of Computer and Information Engineering, Henan Normal University, Xinxiang, Henan, China
b School of Physics, Henan Normal University, Xinxiang, Henan, China
c Engineering Lab of Intelligence Business and Internet of Things, Xinxiang, Henan, China
d Department of Mathematics, Zhejiang University of Technology, Hangzhou, China
References:
Abstract: Two novel extended semidiscrete KP-type systems, namely, partial differential–difference systems with one continuous and two discrete variables, are investigated. Introducing an arbitrary function into the Cauchy matrix function or the plane wave factor allows implementing extended integrable systems within the Cauchy matrix approach. We introduce the bilinear $D\Delta^2$KP system, the extended $D\Delta^2$pKP, $D\Delta^2$pmKP, and $D\Delta^2$SKP systems, all of which are based on the Cauchy matrix approach. This results in a diversity of solutions for these extended systems as contrasted to the usual multiple soliton solutions.
Keywords: squared eigenfunction, semidiscrete KP-type system, generalized Cauchy matrix approach, exact solutions.
Funding agency Grant number
Natural Science Foundation of Henan 242300421687
Project of Henan Province 222102210258
This project is supported by the Natural Science Foundation of Henan (grant No. 242300421687) and Henan Provincial Science and Technology Research Project (grant No. 222102210258).
Received: 30.04.2024
Revised: 01.06.2024
English version:
Theoretical and Mathematical Physics, 2024, Volume 221, Issue 2, Pages 1929–1939
DOI: https://doi.org/10.1134/S0040577924110096
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Hong-juan Tian, A. Silem, “Cauchy matrix approach to novel extended semidiscrete KP-type systems”, TMF, 221:2 (2024), 385–396; Theoret. and Math. Phys., 221:2 (2024), 1929–1939
Citation in format AMSBIB
\Bibitem{TiaSil24}
\by Hong-juan~Tian, A.~Silem
\paper Cauchy matrix approach to novel extended semidiscrete KP-type systems
\jour TMF
\yr 2024
\vol 221
\issue 2
\pages 385--396
\mathnet{http://mi.mathnet.ru/tmf10749}
\crossref{https://doi.org/10.4213/tmf10749}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024TMP...221.1929T}
\transl
\jour Theoret. and Math. Phys.
\yr 2024
\vol 221
\issue 2
\pages 1929--1939
\crossref{https://doi.org/10.1134/S0040577924110096}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85210232130}
Linking options:
  • https://www.mathnet.ru/eng/tmf10749
  • https://doi.org/10.4213/tmf10749
  • https://www.mathnet.ru/eng/tmf/v221/i2/p385
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025