Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2024, Volume 221, Number 2, Pages 353–384
DOI: https://doi.org/10.4213/tmf10735
(Mi tmf10735)
 

Binary Bargmann symmetry constraint and algebro-geometric solutions of a semidiscrete integrable hierarchy

Yaxin Guan, Xinyue Li, Qiulan Zhao

College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, Shandong, China
References:
Abstract: We present the binary Bargmann symmetry constraint and algebro-geometric solutions for a semidiscrete integrable hierarchy with a bi-Hamiltonian structure. First, we derive a hierarchy associated with a discrete spectral problem by applying the zero-curvature equation and study its bi-Hamiltonian structure. Then, resorting to the binary Bargmann symmetry constraint for the potentials and eigenfunctions, we decompose the hierarchy into an integrable symplectic map and finite-dimensional integrable Hamiltonian systems. Moreover, with the help of the characteristic polynomial of the Lax matrix, we propose a trigonal curve encompassing two infinite points. On this trigonal curve, we introduce a stationary Baker–Akhiezer function and a meromorphic function, and analyze their asymptotic properties and divisors. Based on these preparations, we obtain algebro-geometric solutions for the hierarchy in terms of the Riemann theta function.
Keywords: bi-Hamiltonian structure, binary Bargmann symmetry constraint, trigonal curve, Baker–Akhiezer function, meromorphic function, algebro-geometric solutions.
Funding agency Grant number
Shandong University
This work was supported by the “Jingying” Project of Shandong University of Science and Technology.
Received: 01.04.2024
Revised: 16.06.2024
English version:
Theoretical and Mathematical Physics, 2024, Volume 221, Issue 2, Pages 1901–1928
DOI: https://doi.org/10.1134/S0040577924110084
Bibliographic databases:
Document Type: Article
MSC: 37J35; 14H42; 14H70
Language: Russian
Citation: Yaxin Guan, Xinyue Li, Qiulan Zhao, “Binary Bargmann symmetry constraint and algebro-geometric solutions of a semidiscrete integrable hierarchy”, TMF, 221:2 (2024), 353–384; Theoret. and Math. Phys., 221:2 (2024), 1901–1928
Citation in format AMSBIB
\Bibitem{GuaLiZha24}
\by Yaxin~Guan, Xinyue~Li, Qiulan~Zhao
\paper Binary Bargmann symmetry constraint and algebro-geometric solutions of a~semidiscrete integrable hierarchy
\jour TMF
\yr 2024
\vol 221
\issue 2
\pages 353--384
\mathnet{http://mi.mathnet.ru/tmf10735}
\crossref{https://doi.org/10.4213/tmf10735}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024TMP...221.1901G}
\transl
\jour Theoret. and Math. Phys.
\yr 2024
\vol 221
\issue 2
\pages 1901--1928
\crossref{https://doi.org/10.1134/S0040577924110084}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85210254851}
Linking options:
  • https://www.mathnet.ru/eng/tmf10735
  • https://doi.org/10.4213/tmf10735
  • https://www.mathnet.ru/eng/tmf/v221/i2/p353
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025