Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2024, Volume 219, Number 3, Pages 391–421
DOI: https://doi.org/10.4213/tmf10725
(Mi tmf10725)
 

Expansion of hypergeometric functions in terms of polylogarithms with a nontrivial change of variables

M. A. Bezuglovab, A. I. Onischenkoabc

a Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
b Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
c Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: Hypergeometric functions of one and many variables play an important role in various branches of modern physics and mathematics. We often encounter hypergeometric functions with indices linearly dependent on a small parameter with respect to which we need to perform Laurent expansions. Moreover, it is desirable that such expansions be expressed in terms of well-known functions that can be evaluated with arbitrary precision. To solve this problem, we use the method of differential equations and the reduction of corresponding differential systems to a canonical basis. In this paper, we are interested in the generalized hypergeometric functions of one variable and in the Appell and Lauricella functions and their expansions in terms of the Goncharov polylogarithms. Particular attention is paid to the case of rational indices of the considered hypergeometric functions when the reduction to the canonical basis involves a nontrivial variable change. The paper comes with a Mathematica package Diogenes, which provides an algorithmic implementation of the required steps.
Keywords: generalized hypergeometric functions, Appell and Lauricella functions.
Funding agency Grant number
Russian Science Foundation 20-12-00205
This work was supported by the Russian Science Foundation under grant No. 20-12-00205.
Received: 16.03.2024
Revised: 16.03.2024
English version:
Theoretical and Mathematical Physics, 2024, Volume 219, Issue 3, Pages 871–896
DOI: https://doi.org/10.1134/S0040577924060011
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. A. Bezuglov, A. I. Onischenko, “Expansion of hypergeometric functions in terms of polylogarithms with a nontrivial change of variables”, TMF, 219:3 (2024), 391–421; Theoret. and Math. Phys., 219:3 (2024), 871–896
Citation in format AMSBIB
\Bibitem{BezOni24}
\by M.~A.~Bezuglov, A.~I.~Onischenko
\paper Expansion of hypergeometric functions in terms of polylogarithms with a~nontrivial change of variables
\jour TMF
\yr 2024
\vol 219
\issue 3
\pages 391--421
\mathnet{http://mi.mathnet.ru/tmf10725}
\crossref{https://doi.org/10.4213/tmf10725}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4767963}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024TMP...219..871B}
\transl
\jour Theoret. and Math. Phys.
\yr 2024
\vol 219
\issue 3
\pages 871--896
\crossref{https://doi.org/10.1134/S0040577924060011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85196858556}
Linking options:
  • https://www.mathnet.ru/eng/tmf10725
  • https://doi.org/10.4213/tmf10725
  • https://www.mathnet.ru/eng/tmf/v219/i3/p391
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:107
    Full-text PDF :4
    Russian version HTML:4
    References:20
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024