Abstract:
A hierarchy of the nonlocal nonlinear Schrödinger equation with self-consistent sources is introduced. The physically significant nonlinear equation is associated with the AKNS spectral problem. In the nonlocal case, the squared eigenfunction of the $L$ operator leads to some changes in the term of the source that affect the motion of solitons. The soliton solutions of the nonlocal nonlinear Schrödinger equation with self-consistent sources are presented using the inverse scattering transform. The dynamics of the solitons are illustrated, which differ from those of the nonlocal equation without a source.