Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2024, Volume 219, Number 3, Pages 474–507
DOI: https://doi.org/10.4213/tmf10676
(Mi tmf10676)
 

This article is cited in 1 scientific paper (total in 1 paper)

Revisiting solutions of the Adler–Bobenko–Suris lattice equations and lattice Boussinesq-type equations

Song-lin Zhaoa, Kе Yana, Ying-ying  Sunb

a Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, China
b Department of Mathematics, University of Shanghai for Science and Technology, Shanghai, China
References:
Abstract: Solutions of all Adler–Bobenko–Suris equations except $Q4$, and of several lattice Boussinesq-type equations are reconsidered by using the Cauchy matrix approach. By introducing a “fake” nonautonomous plane-wave factor, we derive soliton solutions, oscillatory solutions, and semi-oscillatory solutions of the target lattice equations. Unlike the conventional soliton solutions, the oscillatory solutions take constant values on all elementary quadrilaterals on $\mathbb{Z}^2$, which demonstrates a periodic structure.
Keywords: Cauchy matrix approach, Adler–Bobenko–Suris lattice equations, lattice Boussinesq-type equations, soliton solutions, (semi-)oscillatory solutions.
Funding agency Grant number
National Natural Science Foundation of China 12071432
12001369
Zhejiang Provincial Natural Science Foundation of China LY17A010024
Shanghai Sailing Program 20YF1433000
This project is supported by the~National Natural Science Foundation of China under grant Nos.~12071432 and~12001369), the~ Natural Science Foundation of Zhejiang Province under grant No.~LY17A010024, and the~Shanghai Sailing Program (grant No.~20YF1433000).
Received: 16.01.2024
Revised: 16.01.2024
English version:
Theoretical and Mathematical Physics, 2024, Volume 219, Issue 3, Pages 944–972
DOI: https://doi.org/10.1134/S0040577924060059
Bibliographic databases:
Document Type: Article
MSC: 35Q51; 35Q53
Language: Russian
Citation: Song-lin Zhao, Kе Yan, Ying-ying  Sun, “Revisiting solutions of the Adler–Bobenko–Suris lattice equations and lattice Boussinesq-type equations”, TMF, 219:3 (2024), 474–507; Theoret. and Math. Phys., 219:3 (2024), 944–972
Citation in format AMSBIB
\Bibitem{ZhaYanSun24}
\by Song-lin~Zhao, Kе~Yan, Ying-ying~~Sun
\paper Revisiting solutions of the~Adler--Bobenko--Suris lattice equations and lattice Boussinesq-type equations
\jour TMF
\yr 2024
\vol 219
\issue 3
\pages 474--507
\mathnet{http://mi.mathnet.ru/tmf10676}
\crossref{https://doi.org/10.4213/tmf10676}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4767967}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024TMP...219..944Z}
\transl
\jour Theoret. and Math. Phys.
\yr 2024
\vol 219
\issue 3
\pages 944--972
\crossref{https://doi.org/10.1134/S0040577924060059}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85196769563}
Linking options:
  • https://www.mathnet.ru/eng/tmf10676
  • https://doi.org/10.4213/tmf10676
  • https://www.mathnet.ru/eng/tmf/v219/i3/p474
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:72
    Russian version HTML:1
    References:18
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024