Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2024, Volume 221, Number 2, Pages 315–330
DOI: https://doi.org/10.4213/tmf10650
(Mi tmf10650)
 

Nonlocal abstract Ginzburg–Landau-type equations and applications

V. B. Shakhmurovab

a Antalya Bilim University, Department of Industrial Engineering, Dosemealti, Antalya, Turkey
b Analytical Information Resources Center, Azerbaijan State University of Economics, Baku, Azerbaijan
References:
Abstract: We study a nonlocal abstract Ginzburg–Landau type equation. The equation includes variable coefficients with convolution terms and an abstract linear operator function $A$ in a Fourier-type Banach space $E$. For sufficiently smooth initial data, assuming growth conditions for the operator $A$ and the coefficient $a$, the existence and uniqueness of the solution and the $L^p$ -regularity properties are established. We obtain the existence and uniqueness of the solution, and the regularity of different classes of nonlocal Ginzburg–Landau-type equations by choosing the space $E$ and operator $A$ that occur in a wide variety of physical systems.
Keywords: diffusion equations, Ginzburg–Landau equation, dissipative operators, embedding in Sobolev and Besov spaces, $L^p$-regularity property of solutions, Fourier multipliers.
Received: 04.12.2023
Revised: 02.05.2024
English version:
Theoretical and Mathematical Physics, 2024, Volume 221, Issue 2, Pages 1867–1881
DOI: https://doi.org/10.1134/S0040577924110060
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. B. Shakhmurov, “Nonlocal abstract Ginzburg–Landau-type equations and applications”, TMF, 221:2 (2024), 315–330; Theoret. and Math. Phys., 221:2 (2024), 1867–1881
Citation in format AMSBIB
\Bibitem{Sha24}
\by V.~B.~Shakhmurov
\paper Nonlocal abstract Ginzburg--Landau-type equations and applications
\jour TMF
\yr 2024
\vol 221
\issue 2
\pages 315--330
\mathnet{http://mi.mathnet.ru/tmf10650}
\crossref{https://doi.org/10.4213/tmf10650}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024TMP...221.1867S}
\transl
\jour Theoret. and Math. Phys.
\yr 2024
\vol 221
\issue 2
\pages 1867--1881
\crossref{https://doi.org/10.1134/S0040577924110060}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85210242644}
Linking options:
  • https://www.mathnet.ru/eng/tmf10650
  • https://doi.org/10.4213/tmf10650
  • https://www.mathnet.ru/eng/tmf/v221/i2/p315
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024