Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2024, Volume 219, Number 3, Pages 440–461
DOI: https://doi.org/10.4213/tmf10649
(Mi tmf10649)
 

The Hankel determinant for a semiclassical Laguerre unitary ensemble, Painlevé IV and Heun equations

Dan Wang

School of Computer Science and Artificial Intelligence, Changzhou University, China
References:
Abstract: We analyze the asymptotic behavior of the Hankel determinant generated by a semiclassical Laguerre weight. For this, we use ladder operators and track the evolution of parameters to establish that an auxiliary quantity associated with the semiclassical Laguerre weight satisfies the Painlevé IV equation, subject to suitable transformations of variables. Using the Coulomb fluid method, we derive the large-$n$ expansion of the logarithmic form of the Hankel determinant. This allows us to gain insights into the scaling and fluctuations of the determinant, providing a deeper understanding of its behavior in the semiclassical Laguerre ensemble. Moreover, we delve into the asymptotic evaluation of monic orthogonal polynomials with respect to the semiclassical Laguerre weight, focusing on a special case. In doing so, we shed light on the properties and characteristics of these polynomials in the context of the ensemble. Furthermore, we explore the relation between the second-order differential equations satisfied by the monic orthogonal polynomials with respect to the semiclassical Laguerre weight and the tri-confluent Heun equations or the bi-confluent Heun equations.
Keywords: Hankel determinant, asymptotics, Painlevé IV equation, Heun equation.
Funding agency Grant number
Changzhou University ZMF22020116
D. Wang acknowledges the support of Changzhou University via grant No. ZMF22020116.
Received: 30.11.2023
Revised: 15.01.2024
English version:
Theoretical and Mathematical Physics, 2024, Volume 219, Issue 3, Pages 913–932
DOI: https://doi.org/10.1134/S0040577924060035
Bibliographic databases:
Document Type: Article
MSC: 15B52, 42C05
Language: Russian
Citation: Dan Wang, “The Hankel determinant for a semiclassical Laguerre unitary ensemble, Painlevé IV and Heun equations”, TMF, 219:3 (2024), 440–461; Theoret. and Math. Phys., 219:3 (2024), 913–932
Citation in format AMSBIB
\Bibitem{Wan24}
\by Dan~Wang
\paper The~Hankel determinant for a~semiclassical Laguerre unitary ensemble, Painlev\'{e}~IV and Heun equations
\jour TMF
\yr 2024
\vol 219
\issue 3
\pages 440--461
\mathnet{http://mi.mathnet.ru/tmf10649}
\crossref{https://doi.org/10.4213/tmf10649}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4767965}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024TMP...219..913W}
\transl
\jour Theoret. and Math. Phys.
\yr 2024
\vol 219
\issue 3
\pages 913--932
\crossref{https://doi.org/10.1134/S0040577924060035}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85196786001}
Linking options:
  • https://www.mathnet.ru/eng/tmf10649
  • https://doi.org/10.4213/tmf10649
  • https://www.mathnet.ru/eng/tmf/v219/i3/p440
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:91
    Full-text PDF :4
    Russian version HTML:1
    References:20
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024