Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2023, Volume 217, Number 3, Pages 672–693
DOI: https://doi.org/10.4213/tmf10632
(Mi tmf10632)
 

Cluster variables for affine Lie–Poisson systems

L. O. Chekhovab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b Michigan State University, East Lansing, USA
References:
Abstract: We show that having any planar (cyclic or acyclicm) directed network on a disc with the only condition that all $n_1+m$ sources are separated from all $n_2+m$ sinks, we can construct a cluster-algebra realization of elements of an affine Lie–Poisson algebra $R(\lambda,\mu) {\stackrel{1}{T}} (\lambda) {\stackrel{1}{T}}(\mu)= {\stackrel{2}{T}}(\mu) {\stackrel{1}{T}}(\lambda)R(\lambda,\mu)$ with $({n_1\times n_2})$-matrices $T(\lambda)$. Upon satisfaction of some invertibility conditions, we can construct a realization of a quantum loop algebra. Having the quantum loop algebra, we can also construct a realization of the twisted Yangian algebra or of the quantum reflection equation. For each such a planar network, we can therefore construct a symplectic leaf of the corresponding infinite-dimensional algebra.
Keywords: $R$-matrix, reflection equation, quantum loop algebra, planar network.
Received: 06.11.2023
Revised: 06.11.2023
English version:
Theoretical and Mathematical Physics, 2023, Volume 217, Issue 3, Pages 1987–2004
DOI: https://doi.org/10.1134/S0040577923120140
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: L. O. Chekhov, “Cluster variables for affine Lie–Poisson systems”, TMF, 217:3 (2023), 672–693; Theoret. and Math. Phys., 217:3 (2023), 1987–2004
Citation in format AMSBIB
\Bibitem{Che23}
\by L.~O.~Chekhov
\paper Cluster variables for affine Lie--Poisson systems
\jour TMF
\yr 2023
\vol 217
\issue 3
\pages 672--693
\mathnet{http://mi.mathnet.ru/tmf10632}
\crossref{https://doi.org/10.4213/tmf10632}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4700038}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023TMP...217.1987C}
\transl
\jour Theoret. and Math. Phys.
\yr 2023
\vol 217
\issue 3
\pages 1987--2004
\crossref{https://doi.org/10.1134/S0040577923120140}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85180486306}
Linking options:
  • https://www.mathnet.ru/eng/tmf10632
  • https://doi.org/10.4213/tmf10632
  • https://www.mathnet.ru/eng/tmf/v217/i3/p672
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:99
    Full-text PDF :1
    Russian version HTML:2
    References:18
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024