Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2024, Volume 219, Number 1, Pages 80–113
DOI: https://doi.org/10.4213/tmf10615
(Mi tmf10615)
 

The focusing coupled modified Korteweg–de Vries equation with nonzero boundary conditions: the Riemann–Hilbert problem and soliton classification

Xinxin Ma

Department of Mathematics, China University of Mining and Technology, Beijing, China
References:
Abstract: The focusing coupled modified Korteweg–de Vries equation with nonzero boundary conditions is investigated by the Riemann–Hilbert approach. Three symmetries are formulated to derive compact exact solutions. The solutions include six different types of soliton solutions and breathers, such as dark–dark, bright–bright, kink–dark–dark, kink–bright–bright solitons, and a breather–breather solution.
Keywords: focusing coupled modified Korteweg–de Vries equation, nonzero boundary condition, dark–dark soliton, kink soliton, Riemann–Hilbert problem.
Funding agency Grant number
National Natural Science Foundation of China 12171474
11931017
Yue Qi Young Scholar Project, China University of Mining & Technology, Beijing 00-800015Z1201
This work was supported by the National Natural Science Foundation of China (NNSFC) (grant Nos. 12171474 and 11931017) and the Yue Qi Young Scholar Project, China University of Mining & Technology, Beijing (grant No. 00-800015Z1201).
Received: 19.09.2023
Revised: 13.11.2023
English version:
Theoretical and Mathematical Physics, 2024, Volume 219, Issue 1, Pages 598–628
DOI: https://doi.org/10.1134/S004057792404007X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Xinxin Ma, “The focusing coupled modified Korteweg–de Vries equation with nonzero boundary conditions: the Riemann–Hilbert problem and soliton classification”, TMF, 219:1 (2024), 80–113; Theoret. and Math. Phys., 219:1 (2024), 598–628
Citation in format AMSBIB
\Bibitem{Ma24}
\by Xinxin~Ma
\paper The~focusing coupled modified Korteweg--de Vries equation with nonzero boundary conditions: the~Riemann--Hilbert problem and soliton classification
\jour TMF
\yr 2024
\vol 219
\issue 1
\pages 80--113
\mathnet{http://mi.mathnet.ru/tmf10615}
\crossref{https://doi.org/10.4213/tmf10615}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4736931}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024TMP...219..598M}
\transl
\jour Theoret. and Math. Phys.
\yr 2024
\vol 219
\issue 1
\pages 598--628
\crossref{https://doi.org/10.1134/S004057792404007X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85191398317}
Linking options:
  • https://www.mathnet.ru/eng/tmf10615
  • https://doi.org/10.4213/tmf10615
  • https://www.mathnet.ru/eng/tmf/v219/i1/p80
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:91
    Full-text PDF :3
    References:19
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024