Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2024, Volume 218, Number 2, Pages 280–305
DOI: https://doi.org/10.4213/tmf10550
(Mi tmf10550)
 

Stabilization of the statistical solutions for large times for a harmonic lattice coupled to a Klein–Gordon field

T. V. Dudnikova

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, Russia
References:
Abstract: We consider the Cauchy problem for the Hamiltonian system consisting of the Klein–Gordon field and an infinite harmonic crystal. The dynamics of the coupled system is translation-invariant with respect to the discrete subgroup $\mathbb{Z}^d$ of $\mathbb{R}^d$. The initial date is assumed to be a random function that is close to two spatially homogeneous (with respect to the subgroup $\mathbb{Z}^d$) processes when $\pm x_1>a$ with some $a>0$. We study the distribution $\mu_t$ of the solution at time $t\in\mathbb{R}$ and prove the weak convergence of $\mu_t$ to a Gaussian measure $\mu_\infty$ as $t\to\infty$. Moreover, we prove the convergence of the correlation functions to a limit and derive the explicit formulas for the covariance of the limit measure $\mu_\infty$. We give an application to Gibbs measures.
Keywords: Klein–Gordon field coupled to a harmonic crystal, Zak transform, random initial data, Gaussian and Gibbs measures, weak convergence of measures.
Received: 30.05.2023
Revised: 30.05.2023
English version:
Theoretical and Mathematical Physics, 2024, Volume 218, Issue 2, Pages 241–263
DOI: https://doi.org/10.1134/S0040577924020053
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: T. V. Dudnikova, “Stabilization of the statistical solutions for large times for a harmonic lattice coupled to a Klein–Gordon field”, TMF, 218:2 (2024), 280–305; Theoret. and Math. Phys., 218:2 (2024), 241–263
Citation in format AMSBIB
\Bibitem{Dud24}
\by T.~V.~Dudnikova
\paper Stabilization of the~statistical solutions for large times for a~harmonic lattice coupled to a~Klein--Gordon field
\jour TMF
\yr 2024
\vol 218
\issue 2
\pages 280--305
\mathnet{http://mi.mathnet.ru/tmf10550}
\crossref{https://doi.org/10.4213/tmf10550}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4710020}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024TMP...218..241D}
\transl
\jour Theoret. and Math. Phys.
\yr 2024
\vol 218
\issue 2
\pages 241--263
\crossref{https://doi.org/10.1134/S0040577924020053}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85185945371}
Linking options:
  • https://www.mathnet.ru/eng/tmf10550
  • https://doi.org/10.4213/tmf10550
  • https://www.mathnet.ru/eng/tmf/v218/i2/p280
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024