Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2024, Volume 218, Number 2, Pages 389–399
DOI: https://doi.org/10.4213/tmf10545
(Mi tmf10545)
 

Solution of the fractional Liouville equation by using Riemann–Liouville and Caputo derivatives in statistical mechanics

Z. Korichia, A. Souigata, R. Bekhoucheb, M. Meftahb

a Department of Exact Sciences, École Normale Supérieure de Ouargla, Ouargla, Algeria
b Department of Physics, Kasdi Merbah University, Ouargla, Algeria
References:
Abstract: We solve the fractional Liouville equation by using Riemann–Liouville and Caputo derivatives for systems exhibiting noninteger power laws in their Hamiltonians. Based on the fractional Liouville equation, we calculate the density function (DF) of a classical ideal gas. If the Riemann–Liouville derivative is used, the DF is a function depending on both the momentum $p$ and the coordinate $q$, but if the derivative in the Caputo sense is used, the DF is a constant independent of $p$ and $q$. We also study a gas consisting of $N$ fractional oscillators in one-dimensional space and obtain that the DF of the system depends on the type of the derivative.
Keywords: fractional Liouville equation, Riemann–Liouville derivative, Caputo derivative, fractional ideal gas.
Received: 26.05.2023
Revised: 22.06.2023
English version:
Theoretical and Mathematical Physics, 2024, Volume 218, Issue 2, Pages 336–345
DOI: https://doi.org/10.1134/S0040577924020107
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Z. Korichi, A. Souigat, R. Bekhouche, M. Meftah, “Solution of the fractional Liouville equation by using Riemann–Liouville and Caputo derivatives in statistical mechanics”, TMF, 218:2 (2024), 389–399; Theoret. and Math. Phys., 218:2 (2024), 336–345
Citation in format AMSBIB
\Bibitem{KorSouBek24}
\by Z.~Korichi, A.~Souigat, R.~Bekhouche, M.~Meftah
\paper Solution of the~fractional Liouville equation by using
Riemann--Liouville and Caputo derivatives in statistical mechanics
\jour TMF
\yr 2024
\vol 218
\issue 2
\pages 389--399
\mathnet{http://mi.mathnet.ru/tmf10545}
\crossref{https://doi.org/10.4213/tmf10545}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4710025}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024TMP...218..336K}
\transl
\jour Theoret. and Math. Phys.
\yr 2024
\vol 218
\issue 2
\pages 336--345
\crossref{https://doi.org/10.1134/S0040577924020107}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85185943028}
Linking options:
  • https://www.mathnet.ru/eng/tmf10545
  • https://doi.org/10.4213/tmf10545
  • https://www.mathnet.ru/eng/tmf/v218/i2/p389
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:101
    Full-text PDF :1
    Russian version HTML:3
    References:30
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024