Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2024, Volume 218, Number 2, Pages 207–222
DOI: https://doi.org/10.4213/tmf10529
(Mi tmf10529)
 

The structure of shift-invariant subspaces of Sobolev spaces

A. Aksentijevića, S. Aleksićb, S. Pilipovićc

a Faculty of Technical Sciences, University of Kragujevac, Kragujevac, Serbia
b Department of Mathematics and Informatics, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
c Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
References:
Abstract: We analyze shift-invariant spaces Vs, subspaces of Sobolev spaces Hs(Rn), sR, generated by a set of generators φi, iI, with I at most countable, by the use of range functions and characterize Bessel sequences, frames, and the Riesz basis of such spaces. We also describe Vs in terms of Gramians and their direct sum decompositions. We show that fDL2(Rn) belongs to Vs if and only if its Fourier transform has the form ˆf=iIfigi, fi=ˆφiL2s(Rn), {φi(+k):kZn,iI} is a frame, and gi=kZnaike2π1,k, with (aik)kZn2(Zn). Moreover, connecting two different approaches to shift-invariant spaces Vs and V2s, s>0, under the assumption that a finite number of generators belongs to HsL2s, we give the characterization of elements in Vs through the expansions with coefficients in 2s(Zn). The corresponding assertion holds for the intersections of such spaces and their duals in the case where the generators are elements of S(Rn). We then show that s>0Vs is the space consisting of functions whose Fourier transforms equal products of functions in S(Rn) and periodic smooth functions. The appropriate assertion is obtained for s>0Vs.
Keywords: Sobolev space, shift-invariant space, range function, frame, Bessel family.
Funding agency Grant number
Serbian Ministry of Science and Technology 451-03-47/2023-01/200122
Serbian Academy of Sciences and Arts F10
The authors are supported by the Serbian Ministry of Science and Technology (grant No. 451-03-47/2023-01/200122), and project F10 of the Serbian Academy of Sciences and Arts.
Received: 23.04.2023
Revised: 23.04.2023
English version:
Theoretical and Mathematical Physics, 2024, Volume 218, Issue 2, Pages 177–191
DOI: https://doi.org/10.1134/S0040577924020016
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. Aksentijević, S. Aleksić, S. Pilipović, “The structure of shift-invariant subspaces of Sobolev spaces”, TMF, 218:2 (2024), 207–222; Theoret. and Math. Phys., 218:2 (2024), 177–191
Citation in format AMSBIB
\Bibitem{AksAlePil24}
\by A.~Aksentijevi\'c, S.~Aleksi\'c, S.~Pilipovi{\'c}
\paper The~structure of shift-invariant subspaces of Sobolev spaces
\jour TMF
\yr 2024
\vol 218
\issue 2
\pages 207--222
\mathnet{http://mi.mathnet.ru/tmf10529}
\crossref{https://doi.org/10.4213/tmf10529}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4710016}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024TMP...218..177A}
\transl
\jour Theoret. and Math. Phys.
\yr 2024
\vol 218
\issue 2
\pages 177--191
\crossref{https://doi.org/10.1134/S0040577924020016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85185913072}
Linking options:
  • https://www.mathnet.ru/eng/tmf10529
  • https://doi.org/10.4213/tmf10529
  • https://www.mathnet.ru/eng/tmf/v218/i2/p207
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:179
    Full-text PDF :7
    Russian version HTML:16
    References:45
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025