Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2024, Volume 218, Number 2, Pages 207–222
DOI: https://doi.org/10.4213/tmf10529
(Mi tmf10529)
 

The structure of shift-invariant subspaces of Sobolev spaces

A. Aksentijevića, S. Aleksićb, S. Pilipovićc

a Faculty of Technical Sciences, University of Kragujevac, Kragujevac, Serbia
b Department of Mathematics and Informatics, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
c Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
References:
Abstract: We analyze shift-invariant spaces $V_s$, subspaces of Sobolev spaces $H^s(\mathbb{R}^n)$, $s\in\mathbb{R}$, generated by a set of generators $\varphi_i$, $i\in I$, with $I$ at most countable, by the use of range functions and characterize Bessel sequences, frames, and the Riesz basis of such spaces. We also describe $V_s$ in terms of Gramians and their direct sum decompositions. We show that $f\in\mathcal D_{L^2}'(\mathbb{R}^n)$ belongs to $V_s$ if and only if its Fourier transform has the form $\hat f=\sum_{i\in I}f_ig_i$, $f_i=\hat\varphi_i\in L_s^2(\mathbb{R}^n)$, $\{\varphi_i(\,\cdot+k)\colon k\in\mathbb Z^n,\,i\in I\}$ is a frame, and $g_i=\sum_{k\in\mathbb{Z}^n}a_k^ie^{-2\pi\sqrt{-1}\,\langle\,{\cdot}\,,k\rangle}$, with $(a^i_k)_{k\in\mathbb{Z}^n}\in\ell^2(\mathbb{Z}^n)$. Moreover, connecting two different approaches to shift-invariant spaces $V_s$ and $\mathcal V^2_s$, $s>0$, under the assumption that a finite number of generators belongs to $H^s\cap L^2_s$, we give the characterization of elements in $V_s$ through the expansions with coefficients in $\ell_s^2(\mathbb{Z}^n)$. The corresponding assertion holds for the intersections of such spaces and their duals in the case where the generators are elements of $\mathcal S(\mathbb R^n)$. We then show that $\bigcap_{s>0}V_s$ is the space consisting of functions whose Fourier transforms equal products of functions in $\mathcal S(\mathbb R^n)$ and periodic smooth functions. The appropriate assertion is obtained for $\bigcup_{s>0}V_{-s}$.
Keywords: Sobolev space, shift-invariant space, range function, frame, Bessel family.
Funding agency Grant number
Serbian Ministry of Science and Technology 451-03-47/2023-01/200122
Serbian Academy of Sciences and Arts F10
The authors are supported by the Serbian Ministry of Science and Technology (grant No. 451-03-47/2023-01/200122), and project F10 of the Serbian Academy of Sciences and Arts.
Received: 23.04.2023
Revised: 23.04.2023
English version:
Theoretical and Mathematical Physics, 2024, Volume 218, Issue 2, Pages 177–191
DOI: https://doi.org/10.1134/S0040577924020016
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. Aksentijević, S. Aleksić, S. Pilipović, “The structure of shift-invariant subspaces of Sobolev spaces”, TMF, 218:2 (2024), 207–222; Theoret. and Math. Phys., 218:2 (2024), 177–191
Citation in format AMSBIB
\Bibitem{AksAlePil24}
\by A.~Aksentijevi\'c, S.~Aleksi\'c, S.~Pilipovi{\'c}
\paper The~structure of shift-invariant subspaces of Sobolev spaces
\jour TMF
\yr 2024
\vol 218
\issue 2
\pages 207--222
\mathnet{http://mi.mathnet.ru/tmf10529}
\crossref{https://doi.org/10.4213/tmf10529}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4710016}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024TMP...218..177A}
\transl
\jour Theoret. and Math. Phys.
\yr 2024
\vol 218
\issue 2
\pages 177--191
\crossref{https://doi.org/10.1134/S0040577924020016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85185913072}
Linking options:
  • https://www.mathnet.ru/eng/tmf10529
  • https://doi.org/10.4213/tmf10529
  • https://www.mathnet.ru/eng/tmf/v218/i2/p207
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025