Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2023, Volume 217, Number 1, Pages 204–219
DOI: https://doi.org/10.4213/tmf10517
(Mi tmf10517)
 

This article is cited in 4 scientific papers (total in 4 papers)

Revised Riemann–Hilbert problem for the derivative nonlinear Schrödinger equation: Vanishing boundary condition

Yongshuai Zhanga , Haibing Wua, Deqin Qiub

a Department of Mathematics, Zhejiang University of Science and Technology, Hangzhou, Zhejiang province, China
b School of Mathematics and Statistics, Huizhou University, Huizhou, Guangdong province, China
Full-text PDF (601 kB) Citations (4)
References:
Abstract: With a vanishing boundary condition, we consider a revised Riemann–Hilbert problem (RHP) for the derivative nonlinear Schrödinger equation (DNLS), where an integral factor is introduced such that the RHP satisfies the normalization condition. In the reflectionless situation, we construct the formulas for the $N$th-order solutions of the DNLS equation, including the solitons and positons that respectively correspond to $N$ pairs of simple poles and one pair of $N$th-order poles of the RHP. According to the Cauchy–Binet formula, we show the expressions for $N$th-order solitons. Additionally, we give an explicit expression for the second-order positon and graphically describe evolutions of the third-order and fourth-order positons.
Keywords: DNLS, inverse scattering method, Riemann–Hilbert problem, soliton.
Funding agency Grant number
National Natural Science Foundation of China 12171433
Doctoral Research Foundation Project of Huizhou University 2022JB039
This work is supported by the National Natural Science Foundation of China (grant No. 12171433) and the Doctoral research foundation project of Huizhou University (grant No. 2022JB039).
Received: 11.04.2023
Revised: 21.05.2023
English version:
Theoretical and Mathematical Physics, 2023, Volume 217, Issue 1, Pages 1595–1608
DOI: https://doi.org/10.1134/S0040577923100112
Bibliographic databases:
Document Type: Article
MSC: 35Q51;37K10
Language: Russian
Citation: Yongshuai Zhang, Haibing Wu, Deqin Qiu, “Revised Riemann–Hilbert problem for the derivative nonlinear Schrödinger equation: Vanishing boundary condition”, TMF, 217:1 (2023), 204–219; Theoret. and Math. Phys., 217:1 (2023), 1595–1608
Citation in format AMSBIB
\Bibitem{ZhaWuQiu23}
\by Yongshuai~Zhang, Haibing~Wu, Deqin~Qiu
\paper Revised Riemann--Hilbert problem for the~derivative nonlinear
Schr\"odinger equation: Vanishing boundary condition
\jour TMF
\yr 2023
\vol 217
\issue 1
\pages 204--219
\mathnet{http://mi.mathnet.ru/tmf10517}
\crossref{https://doi.org/10.4213/tmf10517}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4658819}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023TMP...217.1595Z}
\transl
\jour Theoret. and Math. Phys.
\yr 2023
\vol 217
\issue 1
\pages 1595--1608
\crossref{https://doi.org/10.1134/S0040577923100112}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85174577208}
Linking options:
  • https://www.mathnet.ru/eng/tmf10517
  • https://doi.org/10.4213/tmf10517
  • https://www.mathnet.ru/eng/tmf/v217/i1/p204
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:131
    Full-text PDF :5
    Russian version HTML:19
    References:39
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024