Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2023, Volume 216, Number 1, Pages 133–147
DOI: https://doi.org/10.4213/tmf10485
(Mi tmf10485)
 

This article is cited in 1 scientific paper (total in 1 paper)

Energy spectrum design and potential function engineering

A. D. Alhaidaria, T. J. Taiwob

a Saudi Center for Theoretical Physics, Jeddah, Saudi Arabia
b Department of Physics, United Arab Emirates University, Al-Ain, United Arab Emirates
Full-text PDF (536 kB) Citations (1)
References:
Abstract: Starting with an orthogonal polynomial sequence $\{p_n(s)\}_{n=0}^{\infty}$ that has a discrete spectrum, we design an energy spectrum formula $E_k=f(s_k)$, where $\{s_k\}$ is the finite or infinite discrete spectrum of the polynomial. Using a recent approach to quantum mechanics based not on potential functions but on orthogonal energy polynomials, we give a local numerical realization of the potential function associated with the chosen energy spectrum. We select the three-parameter continuous dual Hahn polynomial as an example. Exact analytic expressions are given for the corresponding bound-state energy spectrum, the phase shift of scattering states, and the wavefunctions. However, the potential function is obtained only numerically for a given set of physical parameters.
Keywords: energy spectrum design, potential function engineering, orthogonal polynomials, recursion relation, continuous dual Hahn polynomial, scattering phase shift, wavefunction.
Received: 18.02.2023
Revised: 11.03.2023
English version:
Theoretical and Mathematical Physics, 2023, Volume 216, Issue 1, Pages 1024–1035
DOI: https://doi.org/10.1134/S0040577923070097
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. D. Alhaidari, T. J. Taiwo, “Energy spectrum design and potential function engineering”, TMF, 216:1 (2023), 133–147; Theoret. and Math. Phys., 216:1 (2023), 1024–1035
Citation in format AMSBIB
\Bibitem{AlhTai23}
\by A.~D.~Alhaidari, T.~J.~Taiwo
\paper Energy spectrum design and potential function engineering
\jour TMF
\yr 2023
\vol 216
\issue 1
\pages 133--147
\mathnet{http://mi.mathnet.ru/tmf10485}
\crossref{https://doi.org/10.4213/tmf10485}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4619871}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023TMP...216.1024A}
\transl
\jour Theoret. and Math. Phys.
\yr 2023
\vol 216
\issue 1
\pages 1024--1035
\crossref{https://doi.org/10.1134/S0040577923070097}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85165721431}
Linking options:
  • https://www.mathnet.ru/eng/tmf10485
  • https://doi.org/10.4213/tmf10485
  • https://www.mathnet.ru/eng/tmf/v216/i1/p133
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:124
    Full-text PDF :18
    Russian version HTML:62
    References:34
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024