Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2023, Volume 217, Number 3, Pages 533–542
DOI: https://doi.org/10.4213/tmf10483
(Mi tmf10483)
 

Quantum corrections to the effective potential in nonrenormalizable theories

D. I. Kazakovab, D. M. Tolkachevac, R. M. Yahibbaeva

a Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
b Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Moscow
c Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk
References:
Abstract: For the effective potential in the leading logarithmic approximation, we construct a renormalization group equation that holds for arbitrary scalar field theories, including nonrenormalizable ones, in four dimensions. This equation reduces to the usual renormalization group equation with a one-loop beta-function in the renormalizable case. The solution of this equation sums up the leading logarithmic contributions in the field in all orders of the perturbation theory. This is a nonlinear second-order partial differential equation in general, but it can be reduced to an ordinary one in some cases. In specific examples, we propose a numerical solution of this equation and construct the effective potential in the leading logarithmic approximation. We consider two examples as an illustration: a power-law potential and a cosmological potential of the $\operatorname{tan}^2\phi$ type. The obtained equation in physically interesting cases opens up the possibility of studying the properties of the effective potential, the presence of additional minima, spontaneous symmetry breaking, stability of the ground state, etc.
Keywords: scalar field theory, effective potential, nonrenormalizable theories, renormalization group.
Funding agency Grant number
Russian Science Foundation 21-12-00129
This work was supported by the Russian Science Foundation (grant No. 21-12-00129).
Received: 19.02.2023
Revised: 19.02.2023
English version:
Theoretical and Mathematical Physics, 2023, Volume 217, Issue 3, Pages 1870–1878
DOI: https://doi.org/10.1134/S0040577923120061
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. I. Kazakov, D. M. Tolkachev, R. M. Yahibbaev, “Quantum corrections to the effective potential in nonrenormalizable theories”, TMF, 217:3 (2023), 533–542; Theoret. and Math. Phys., 217:3 (2023), 1870–1878
Citation in format AMSBIB
\Bibitem{KazTolYah23}
\by D.~I.~Kazakov, D.~M.~Tolkachev, R.~M.~Yahibbaev
\paper Quantum corrections to the~effective potential in nonrenormalizable theories
\jour TMF
\yr 2023
\vol 217
\issue 3
\pages 533--542
\mathnet{http://mi.mathnet.ru/tmf10483}
\crossref{https://doi.org/10.4213/tmf10483}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4700030}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023TMP...217.1870K}
\transl
\jour Theoret. and Math. Phys.
\yr 2023
\vol 217
\issue 3
\pages 1870--1878
\crossref{https://doi.org/10.1134/S0040577923120061}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85180439972}
Linking options:
  • https://www.mathnet.ru/eng/tmf10483
  • https://doi.org/10.4213/tmf10483
  • https://www.mathnet.ru/eng/tmf/v217/i3/p533
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:141
    Full-text PDF :5
    Russian version HTML:7
    References:28
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024